/** * Copyright (c) 2011, Novyon Events * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * @author Anthyon */ package com.jme3.terrain.noise; import java.awt.Color; import java.awt.Graphics2D; import java.awt.image.BufferedImage; import java.awt.image.DataBuffer; import java.awt.image.DataBufferInt; import java.awt.image.WritableRaster; import java.nio.ByteBuffer; import java.nio.ByteOrder; /** * Helper class containing useful functions explained in the book: * Texturing & Modeling - A Procedural Approach * * @author Anthyon * */ public class ShaderUtils { public static final float[] i2c(final int color) { return new float[] { (color & 0x00ff0000) / 256f, (color & 0x0000ff00) / 256f, (color & 0x000000ff) / 256f, (color & 0xff000000) / 256f }; } public static final int c2i(final float[] color) { return (color.length == 4 ? (int) (color[3] * 256) : 0xff000000) | ((int) (color[0] * 256) << 16) | ((int) (color[1] * 256) << 8) | (int) (color[2] * 256); } public static final float mix(final float a, final float b, final float f) { return (1 - f) * a + f * b; } public static final Color mix(final Color a, final Color b, final float f) { return new Color((int) ShaderUtils.clamp(ShaderUtils.mix(a.getRed(), b.getRed(), f), 0, 255), (int) ShaderUtils.clamp( ShaderUtils.mix(a.getGreen(), b.getGreen(), f), 0, 255), (int) ShaderUtils.clamp( ShaderUtils.mix(a.getBlue(), b.getBlue(), f), 0, 255)); } public static final int mix(final int a, final int b, final float f) { return (int) ((1 - f) * a + f * b); } public static final float[] mix(final float[] c1, final float[] c2, final float f) { return new float[] { ShaderUtils.mix(c1[0], c2[0], f), ShaderUtils.mix(c1[1], c2[1], f), ShaderUtils.mix(c1[2], c2[2], f) }; } public static final float step(final float a, final float x) { return x < a ? 0 : 1; } public static final float boxstep(final float a, final float b, final float x) { return ShaderUtils.clamp((x - a) / (b - a), 0, 1); } public static final float pulse(final float a, final float b, final float x) { return ShaderUtils.step(a, x) - ShaderUtils.step(b, x); } public static final float clamp(final float x, final float a, final float b) { return x < a ? a : x > b ? b : x; } public static final float min(final float a, final float b) { return a < b ? a : b; } public static final float max(final float a, final float b) { return a > b ? a : b; } public static final float abs(final float x) { return x < 0 ? -x : x; } public static final float smoothstep(final float a, final float b, final float x) { if (x < a) { return 0; } else if (x > b) { return 1; } float xx = (x - a) / (b - a); return xx * xx * (3 - 2 * xx); } public static final float mod(final float a, final float b) { int n = (int) (a / b); float aa = a - n * b; if (aa < 0) { aa += b; } return aa; } public static final int floor(final float x) { return x > 0 ? (int) x : (int) x - 1; } public static final float ceil(final float x) { return (int) x + (x > 0 && x != (int) x ? 1 : 0); } public static final float spline(float x, final float[] knot) { float CR00 = -0.5f; float CR01 = 1.5f; float CR02 = -1.5f; float CR03 = 0.5f; float CR10 = 1.0f; float CR11 = -2.5f; float CR12 = 2.0f; float CR13 = -0.5f; float CR20 = -0.5f; float CR21 = 0.0f; float CR22 = 0.5f; float CR23 = 0.0f; float CR30 = 0.0f; float CR31 = 1.0f; float CR32 = 0.0f; float CR33 = 0.0f; int span; int nspans = knot.length - 3; float c0, c1, c2, c3; /* coefficients of the cubic. */ if (nspans < 1) {/* illegal */ throw new RuntimeException("Spline has too few knots."); } /* Find the appropriate 4-point span of the spline. */ x = ShaderUtils.clamp(x, 0, 1) * nspans; span = (int) x; if (span >= knot.length - 3) { span = knot.length - 3; } x -= span; /* Evaluate the span cubic at x using Horner’s rule. */ c3 = CR00 * knot[span + 0] + CR01 * knot[span + 1] + CR02 * knot[span + 2] + CR03 * knot[span + 3]; c2 = CR10 * knot[span + 0] + CR11 * knot[span + 1] + CR12 * knot[span + 2] + CR13 * knot[span + 3]; c1 = CR20 * knot[span + 0] + CR21 * knot[span + 1] + CR22 * knot[span + 2] + CR23 * knot[span + 3]; c0 = CR30 * knot[span + 0] + CR31 * knot[span + 1] + CR32 * knot[span + 2] + CR33 * knot[span + 3]; return ((c3 * x + c2) * x + c1) * x + c0; } public static final float[] spline(final float x, final float[][] knots) { float[] retval = new float[knots.length]; for (int i = 0; i < knots.length; i++) { retval[i] = ShaderUtils.spline(x, knots[i]); } return retval; } public static final float gammaCorrection(final float gamma, final float x) { return (float) Math.pow(x, 1 / gamma); } public static final float bias(final float b, final float x) { return (float) Math.pow(x, Math.log(b) / Math.log(0.5)); } public static final float gain(final float g, final float x) { return x < 0.5 ? ShaderUtils.bias(1 - g, 2 * x) / 2 : 1 - ShaderUtils.bias(1 - g, 2 - 2 * x) / 2; } public static final float sinValue(final float s, final float minFreq, final float maxFreq, final float swidth) { float value = 0; float cutoff = ShaderUtils.clamp(0.5f / swidth, 0, maxFreq); float f; for (f = minFreq; f < 0.5 * cutoff; f *= 2) { value += Math.sin(2 * Math.PI * f * s) / f; } float fade = ShaderUtils.clamp(2 * (cutoff - f) / cutoff, 0, 1); value += fade * Math.sin(2 * Math.PI * f * s) / f; return value; } public static final float length(final float x, final float y, final float z) { return (float) Math.sqrt(x * x + y * y + z * z); } public static final float[] rotate(final float[] v, final float[][] m) { float x = v[0] * m[0][0] + v[1] * m[0][1] + v[2] * m[0][2]; float y = v[0] * m[1][0] + v[1] * m[1][1] + v[2] * m[1][2]; float z = v[0] * m[2][0] + v[1] * m[2][1] + v[2] * m[2][2]; return new float[] { x, y, z }; } public static final float[][] calcRotationMatrix(final float ax, final float ay, final float az) { float[][] retval = new float[3][3]; float cax = (float) Math.cos(ax); float sax = (float) Math.sin(ax); float cay = (float) Math.cos(ay); float say = (float) Math.sin(ay); float caz = (float) Math.cos(az); float saz = (float) Math.sin(az); retval[0][0] = cay * caz; retval[0][1] = -cay * saz; retval[0][2] = say; retval[1][0] = sax * say * caz + cax * saz; retval[1][1] = -sax * say * saz + cax * caz; retval[1][2] = -sax * cay; retval[2][0] = -cax * say * caz + sax * saz; retval[2][1] = cax * say * saz + sax * caz; retval[2][2] = cax * cay; return retval; } public static final float[] normalize(final float[] v) { float l = ShaderUtils.length(v); float[] r = new float[v.length]; int i = 0; for (float vv : v) { r[i++] = vv / l; } return r; } public static final float length(final float[] v) { float s = 0; for (float vv : v) { s += vv * vv; } return (float) Math.sqrt(s); } public static final ByteBuffer getImageDataFromImage(BufferedImage bufferedImage) { WritableRaster wr; DataBuffer db; BufferedImage bi = new BufferedImage(128, 64, BufferedImage.TYPE_INT_ARGB); Graphics2D g = bi.createGraphics(); g.drawImage(bufferedImage, null, null); bufferedImage = bi; wr = bi.getRaster(); db = wr.getDataBuffer(); DataBufferInt dbi = (DataBufferInt) db; int[] data = dbi.getData(); ByteBuffer byteBuffer = ByteBuffer.allocateDirect(data.length * 4); byteBuffer.order(ByteOrder.LITTLE_ENDIAN); byteBuffer.asIntBuffer().put(data); byteBuffer.flip(); return byteBuffer; } public static float frac(float f) { return f - ShaderUtils.floor(f); } public static float[] floor(float[] fs) { float[] retval = new float[fs.length]; for (int i = 0; i < fs.length; i++) { retval[i] = ShaderUtils.floor(fs[i]); } return retval; } }