/* * Copyright (c) 2014 jMonkeyEngine * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'jMonkeyEngine' nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package com.jme3.app; import com.jme3.profile.*; import com.jme3.renderer.ViewPort; import com.jme3.renderer.queue.RenderQueue.Bucket; import com.jme3.scene.Mesh; import com.jme3.scene.VertexBuffer.Type; import com.jme3.util.BufferUtils; import java.nio.FloatBuffer; /** * An AppProfiler implementation that collects two * per-frame application-wide timings for update versus * render and uses it to create a bar chart style Mesh. * The number of frames displayed and the update interval * can be specified. The chart Mesh is in 'milliseconds' * and can be scaled up or down as required. * * <p>Each column of the chart represents a single frames * timing. Yellow represents the time it takes to * perform all non-rendering activities (running enqueued * tasks, stateManager.update, control.update(), etc) while * the cyan portion represents the rendering time.</p> * * <p>When the end of the chart is reached, the current * frame cycles back around to the beginning.</p> * * @author Paul Speed */ public class BasicProfiler implements AppProfiler { private int size; private int frameIndex = 0; private long[] frames; private long startTime; private long renderTime; private long previousFrame; private long updateInterval = 1000000L; // once a millisecond private long lastUpdate = 0; private Mesh mesh; public BasicProfiler() { this(1280); } public BasicProfiler( int size ) { setFrameCount(size); } /** * Sets the number of frames to display and track. By default * this is 1280. */ public final void setFrameCount( int size ) { if( this.size == size ) { return; } this.size = size; this.frames = new long[size*2]; createMesh(); if( frameIndex >= size ) { frameIndex = 0; } } public int getFrameCount() { return size; } /** * Sets the number of nanoseconds to wait before updating the * mesh. By default this is once a millisecond, ie: 1000000 nanoseconds. */ public void setUpdateInterval( long nanos ) { this.updateInterval = nanos; } public long getUpdateInterval() { return updateInterval; } /** * Returns the mesh that contains the bar chart of tracked frame * timings. */ public Mesh getMesh() { return mesh; } protected final void createMesh() { if( mesh == null ) { mesh = new Mesh(); mesh.setMode(Mesh.Mode.Lines); } mesh.setBuffer(Type.Position, 3, BufferUtils.createFloatBuffer(size * 4 * 3)); FloatBuffer cb = BufferUtils.createFloatBuffer(size * 4 * 4); for( int i = 0; i < size; i++ ) { // For each index we add 4 colors, one for each line // endpoint for two layers. cb.put(0.5f).put(0.5f).put(0).put(1); cb.put(1).put(1).put(0).put(1); cb.put(0).put(0.5f).put(0.5f).put(1); cb.put(0).put(1).put(1).put(1); } mesh.setBuffer(Type.Color, 4, cb); } protected void updateMesh() { FloatBuffer pb = (FloatBuffer)mesh.getBuffer(Type.Position).getData(); pb.rewind(); float scale = 1 / 1000000f; // scaled to ms as pixels for( int i = 0; i < size; i++ ) { float t1 = frames[i * 2] * scale; float t2 = frames[i * 2 + 1] * scale; pb.put(i).put(0).put(0); pb.put(i).put(t1).put(0); pb.put(i).put(t1).put(0); pb.put(i).put(t2).put(0); } mesh.setBuffer(Type.Position, 3, pb); } @Override public void appStep( AppStep step ) { switch(step) { case BeginFrame: startTime = System.nanoTime(); break; case RenderFrame: renderTime = System.nanoTime(); frames[frameIndex * 2] = renderTime - startTime; break; case EndFrame: long time = System.nanoTime(); frames[frameIndex * 2 + 1] = time - renderTime; previousFrame = startTime; frameIndex++; if( frameIndex >= size ) { frameIndex = 0; } if( startTime - lastUpdate > updateInterval ) { updateMesh(); lastUpdate = startTime; } break; } } @Override public void vpStep( VpStep step, ViewPort vp, Bucket bucket ) { } @Override public void spStep(SpStep step, String... additionalInfo) { } }