/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bullet;
import com.jme3.app.AppTask;
import com.jme3.asset.AssetManager;
import com.jme3.bullet.collision.*;
import com.jme3.bullet.collision.shapes.CollisionShape;
import com.jme3.bullet.control.PhysicsControl;
import com.jme3.bullet.control.RigidBodyControl;
import com.jme3.bullet.joints.PhysicsJoint;
import com.jme3.bullet.objects.PhysicsCharacter;
import com.jme3.bullet.objects.PhysicsGhostObject;
import com.jme3.bullet.objects.PhysicsRigidBody;
import com.jme3.bullet.objects.PhysicsVehicle;
import com.jme3.math.Transform;
import com.jme3.math.Vector3f;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Comparator;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.Future;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
* <p>PhysicsSpace - The central jbullet-jme physics space</p>
*
* @author normenhansen
*/
public class PhysicsSpace {
private static final Logger logger = Logger.getLogger(PhysicsSpace.class.getName());
public static final int AXIS_X = 0;
public static final int AXIS_Y = 1;
public static final int AXIS_Z = 2;
private long physicsSpaceId = 0;
private static ThreadLocal<ConcurrentLinkedQueue<AppTask<?>>> pQueueTL =
new ThreadLocal<ConcurrentLinkedQueue<AppTask<?>>>() {
@Override
protected ConcurrentLinkedQueue<AppTask<?>> initialValue() {
return new ConcurrentLinkedQueue<AppTask<?>>();
}
};
private ConcurrentLinkedQueue<AppTask<?>> pQueue = new ConcurrentLinkedQueue<AppTask<?>>();
private static ThreadLocal<PhysicsSpace> physicsSpaceTL = new ThreadLocal<PhysicsSpace>();
private BroadphaseType broadphaseType = BroadphaseType.DBVT;
// private DiscreteDynamicsWorld dynamicsWorld = null;
// private BroadphaseInterface broadphase;
// private CollisionDispatcher dispatcher;
// private ConstraintSolver solver;
// private DefaultCollisionConfiguration collisionConfiguration;
// private Map<GhostObject, PhysicsGhostObject> physicsGhostNodes = new ConcurrentHashMap<GhostObject, PhysicsGhostObject>();
private Map<Long, PhysicsGhostObject> physicsGhostObjects = new ConcurrentHashMap<Long, PhysicsGhostObject>();
private Map<Long, PhysicsCharacter> physicsCharacters = new ConcurrentHashMap<Long, PhysicsCharacter>();
private Map<Long, PhysicsRigidBody> physicsBodies = new ConcurrentHashMap<Long, PhysicsRigidBody>();
private Map<Long, PhysicsJoint> physicsJoints = new ConcurrentHashMap<Long, PhysicsJoint>();
private Map<Long, PhysicsVehicle> physicsVehicles = new ConcurrentHashMap<Long, PhysicsVehicle>();
private ArrayList<PhysicsCollisionListener> collisionListeners = new ArrayList<PhysicsCollisionListener>();
private ArrayDeque<PhysicsCollisionEvent> collisionEvents = new ArrayDeque<PhysicsCollisionEvent>();
private Map<Integer, PhysicsCollisionGroupListener> collisionGroupListeners = new ConcurrentHashMap<Integer, PhysicsCollisionGroupListener>();
private ConcurrentLinkedQueue<PhysicsTickListener> tickListeners = new ConcurrentLinkedQueue<PhysicsTickListener>();
private PhysicsCollisionEventFactory eventFactory = new PhysicsCollisionEventFactory();
private Vector3f worldMin = new Vector3f(-10000f, -10000f, -10000f);
private Vector3f worldMax = new Vector3f(10000f, 10000f, 10000f);
private float accuracy = 1f / 60f;
private int maxSubSteps = 4, rayTestFlags = 1 << 2;
private int solverNumIterations = 10;
static {
// System.loadLibrary("bulletjme");
// initNativePhysics();
}
/**
* Get the current PhysicsSpace <b>running on this thread</b><br/> For
* parallel physics, this can also be called from the OpenGL thread to
* receive the PhysicsSpace
*
* @return the PhysicsSpace running on this thread
*/
public static PhysicsSpace getPhysicsSpace() {
return physicsSpaceTL.get();
}
/**
* Used internally
*
* @param space
*/
public static void setLocalThreadPhysicsSpace(PhysicsSpace space) {
physicsSpaceTL.set(space);
}
public PhysicsSpace() {
this(new Vector3f(-10000f, -10000f, -10000f), new Vector3f(10000f, 10000f, 10000f), BroadphaseType.DBVT);
}
public PhysicsSpace(BroadphaseType broadphaseType) {
this(new Vector3f(-10000f, -10000f, -10000f), new Vector3f(10000f, 10000f, 10000f), broadphaseType);
}
public PhysicsSpace(Vector3f worldMin, Vector3f worldMax) {
this(worldMin, worldMax, BroadphaseType.AXIS_SWEEP_3);
}
public PhysicsSpace(Vector3f worldMin, Vector3f worldMax, BroadphaseType broadphaseType) {
this.worldMin.set(worldMin);
this.worldMax.set(worldMax);
this.broadphaseType = broadphaseType;
create();
}
/**
* Has to be called from the (designated) physics thread
*/
public void create() {
physicsSpaceId = createPhysicsSpace(worldMin.x, worldMin.y, worldMin.z, worldMax.x, worldMax.y, worldMax.z, broadphaseType.ordinal(), false);
pQueueTL.set(pQueue);
physicsSpaceTL.set(this);
// collisionConfiguration = new DefaultCollisionConfiguration();
// dispatcher = new CollisionDispatcher(collisionConfiguration);
// switch (broadphaseType) {
// case SIMPLE:
// broadphase = new SimpleBroadphase();
// break;
// case AXIS_SWEEP_3:
// broadphase = new AxisSweep3(Converter.convert(worldMin), Converter.convert(worldMax));
// break;
// case AXIS_SWEEP_3_32:
// broadphase = new AxisSweep3_32(Converter.convert(worldMin), Converter.convert(worldMax));
// break;
// case DBVT:
// broadphase = new DbvtBroadphase();
// break;
// }
//
// solver = new SequentialImpulseConstraintSolver();
//
// dynamicsWorld = new DiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
// dynamicsWorld.setGravity(new javax.vecmath.Vector3f(0, -9.81f, 0));
//
// broadphase.getOverlappingPairCache().setInternalGhostPairCallback(new GhostPairCallback());
// GImpactCollisionAlgorithm.registerAlgorithm(dispatcher);
//
// //register filter callback for tick / collision
// setTickCallback();
// setContactCallbacks();
// //register filter callback for collision groups
// setOverlapFilterCallback();
}
private native long createPhysicsSpace(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, int broadphaseType, boolean threading);
private void preTick_native(float f) {
AppTask task = pQueue.poll();
task = pQueue.poll();
while (task != null) {
while (task.isCancelled()) {
task = pQueue.poll();
}
try {
task.invoke();
} catch (Exception ex) {
logger.log(Level.SEVERE, null, ex);
}
task = pQueue.poll();
}
for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) {
PhysicsTickListener physicsTickCallback = it.next();
physicsTickCallback.prePhysicsTick(this, f);
}
}
private void postTick_native(float f) {
for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) {
PhysicsTickListener physicsTickCallback = it.next();
physicsTickCallback.physicsTick(this, f);
}
}
private void addCollision_native() {
}
private boolean needCollision_native(PhysicsCollisionObject objectA, PhysicsCollisionObject objectB) {
return false;
}
// private void setOverlapFilterCallback() {
// OverlapFilterCallback callback = new OverlapFilterCallback() {
//
// public boolean needBroadphaseCollision(BroadphaseProxy bp, BroadphaseProxy bp1) {
// boolean collides = (bp.collisionFilterGroup & bp1.collisionFilterMask) != 0;
// if (collides) {
// collides = (bp1.collisionFilterGroup & bp.collisionFilterMask) != 0;
// }
// if (collides) {
// assert (bp.clientObject instanceof com.bulletphysics.collision.dispatch.CollisionObject && bp.clientObject instanceof com.bulletphysics.collision.dispatch.CollisionObject);
// com.bulletphysics.collision.dispatch.CollisionObject colOb = (com.bulletphysics.collision.dispatch.CollisionObject) bp.clientObject;
// com.bulletphysics.collision.dispatch.CollisionObject colOb1 = (com.bulletphysics.collision.dispatch.CollisionObject) bp1.clientObject;
// assert (colOb.getUserPointer() != null && colOb1.getUserPointer() != null);
// PhysicsCollisionObject collisionObject = (PhysicsCollisionObject) colOb.getUserPointer();
// PhysicsCollisionObject collisionObject1 = (PhysicsCollisionObject) colOb1.getUserPointer();
// if ((collisionObject.getCollideWithGroups() & collisionObject1.getCollisionGroup()) > 0
// || (collisionObject1.getCollideWithGroups() & collisionObject.getCollisionGroup()) > 0) {
// PhysicsCollisionGroupListener listener = collisionGroupListeners.get(collisionObject.getCollisionGroup());
// PhysicsCollisionGroupListener listener1 = collisionGroupListeners.get(collisionObject1.getCollisionGroup());
// if (listener != null) {
// return listener.collide(collisionObject, collisionObject1);
// } else if (listener1 != null) {
// return listener1.collide(collisionObject, collisionObject1);
// }
// return true;
// } else {
// return false;
// }
// }
// return collides;
// }
// };
// dynamicsWorld.getPairCache().setOverlapFilterCallback(callback);
// }
// private void setTickCallback() {
// final PhysicsSpace space = this;
// InternalTickCallback callback2 = new InternalTickCallback() {
//
// @Override
// public void internalTick(DynamicsWorld dw, float f) {
// //execute task list
// AppTask task = pQueue.poll();
// task = pQueue.poll();
// while (task != null) {
// while (task.isCancelled()) {
// task = pQueue.poll();
// }
// try {
// task.invoke();
// } catch (Exception ex) {
// logger.log(Level.SEVERE, null, ex);
// }
// task = pQueue.poll();
// }
// for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) {
// PhysicsTickListener physicsTickCallback = it.next();
// physicsTickCallback.prePhysicsTick(space, f);
// }
// }
// };
// dynamicsWorld.setPreTickCallback(callback2);
// InternalTickCallback callback = new InternalTickCallback() {
//
// @Override
// public void internalTick(DynamicsWorld dw, float f) {
// for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) {
// PhysicsTickListener physicsTickCallback = it.next();
// physicsTickCallback.physicsTick(space, f);
// }
// }
// };
// dynamicsWorld.setInternalTickCallback(callback, this);
// }
// private void setContactCallbacks() {
// BulletGlobals.setContactAddedCallback(new ContactAddedCallback() {
//
// public boolean contactAdded(ManifoldPoint cp, com.bulletphysics.collision.dispatch.CollisionObject colObj0,
// int partId0, int index0, com.bulletphysics.collision.dispatch.CollisionObject colObj1, int partId1,
// int index1) {
// System.out.println("contact added");
// return true;
// }
// });
//
// BulletGlobals.setContactProcessedCallback(new ContactProcessedCallback() {
//
// public boolean contactProcessed(ManifoldPoint cp, Object body0, Object body1) {
// if (body0 instanceof CollisionObject && body1 instanceof CollisionObject) {
// PhysicsCollisionObject node = null, node1 = null;
// CollisionObject rBody0 = (CollisionObject) body0;
// CollisionObject rBody1 = (CollisionObject) body1;
// node = (PhysicsCollisionObject) rBody0.getUserPointer();
// node1 = (PhysicsCollisionObject) rBody1.getUserPointer();
// collisionEvents.add(eventFactory.getEvent(PhysicsCollisionEvent.TYPE_PROCESSED, node, node1, cp));
// }
// return true;
// }
// });
//
// BulletGlobals.setContactDestroyedCallback(new ContactDestroyedCallback() {
//
// public boolean contactDestroyed(Object userPersistentData) {
// System.out.println("contact destroyed");
// return true;
// }
// });
// }
private void addCollisionEvent_native(PhysicsCollisionObject node, PhysicsCollisionObject node1, long manifoldPointObjectId) {
// System.out.println("addCollisionEvent:"+node.getObjectId()+" "+ node1.getObjectId());
collisionEvents.add(eventFactory.getEvent(PhysicsCollisionEvent.TYPE_PROCESSED, node, node1, manifoldPointObjectId));
}
private boolean notifyCollisionGroupListeners_native(PhysicsCollisionObject node, PhysicsCollisionObject node1){
PhysicsCollisionGroupListener listener = collisionGroupListeners.get(node.getCollisionGroup());
PhysicsCollisionGroupListener listener1 = collisionGroupListeners.get(node1.getCollisionGroup());
boolean result = true;
if(listener != null){
result = listener.collide(node, node1);
}
if(listener1 != null && node.getCollisionGroup() != node1.getCollisionGroup()){
result = listener1.collide(node, node1) && result;
}
return result;
}
/**
* updates the physics space
*
* @param time the current time value
*/
public void update(float time) {
update(time, maxSubSteps);
}
/**
* updates the physics space, uses maxSteps<br>
*
* @param time the current time value
* @param maxSteps
*/
public void update(float time, int maxSteps) {
// if (getDynamicsWorld() == null) {
// return;
// }
//step simulation
stepSimulation(physicsSpaceId, time, maxSteps, accuracy);
}
private native void stepSimulation(long space, float time, int maxSteps, float accuracy);
public void distributeEvents() {
//add collision callbacks
int clistsize = collisionListeners.size();
while( collisionEvents.isEmpty() == false ) {
PhysicsCollisionEvent physicsCollisionEvent = collisionEvents.pop();
for(int i=0;i<clistsize;i++) {
collisionListeners.get(i).collision(physicsCollisionEvent);
}
//recycle events
eventFactory.recycle(physicsCollisionEvent);
}
}
public static <V> Future<V> enqueueOnThisThread(Callable<V> callable) {
AppTask<V> task = new AppTask<V>(callable);
System.out.println("created apptask");
pQueueTL.get().add(task);
return task;
}
/**
* calls the callable on the next physics tick (ensuring e.g. force
* applying)
*
* @param <V>
* @param callable
* @return Future object
*/
public <V> Future<V> enqueue(Callable<V> callable) {
AppTask<V> task = new AppTask<V>(callable);
pQueue.add(task);
return task;
}
/**
* adds an object to the physics space
*
* @param obj the PhysicsControl or Spatial with PhysicsControl to add
*/
public void add(Object obj) {
if (obj instanceof PhysicsControl) {
((PhysicsControl) obj).setPhysicsSpace(this);
} else if (obj instanceof Spatial) {
Spatial node = (Spatial) obj;
for (int i = 0; i < node.getNumControls(); i++) {
if (node.getControl(i) instanceof PhysicsControl) {
add(((PhysicsControl) node.getControl(i)));
}
}
} else if (obj instanceof PhysicsCollisionObject) {
addCollisionObject((PhysicsCollisionObject) obj);
} else if (obj instanceof PhysicsJoint) {
addJoint((PhysicsJoint) obj);
} else {
throw (new UnsupportedOperationException("Cannot add this kind of object to the physics space."));
}
}
public void addCollisionObject(PhysicsCollisionObject obj) {
if (obj instanceof PhysicsGhostObject) {
addGhostObject((PhysicsGhostObject) obj);
} else if (obj instanceof PhysicsRigidBody) {
addRigidBody((PhysicsRigidBody) obj);
} else if (obj instanceof PhysicsVehicle) {
addRigidBody((PhysicsVehicle) obj);
} else if (obj instanceof PhysicsCharacter) {
addCharacter((PhysicsCharacter) obj);
}
}
/**
* removes an object from the physics space
*
* @param obj the PhysicsControl or Spatial with PhysicsControl to remove
*/
public void remove(Object obj) {
if (obj == null) return;
if (obj instanceof PhysicsControl) {
((PhysicsControl) obj).setPhysicsSpace(null);
} else if (obj instanceof Spatial) {
Spatial node = (Spatial) obj;
for (int i = 0; i < node.getNumControls(); i++) {
if (node.getControl(i) instanceof PhysicsControl) {
remove(((PhysicsControl) node.getControl(i)));
}
}
} else if (obj instanceof PhysicsCollisionObject) {
removeCollisionObject((PhysicsCollisionObject) obj);
} else if (obj instanceof PhysicsJoint) {
removeJoint((PhysicsJoint) obj);
} else {
throw (new UnsupportedOperationException("Cannot remove this kind of object from the physics space."));
}
}
public void removeCollisionObject(PhysicsCollisionObject obj) {
if (obj instanceof PhysicsGhostObject) {
removeGhostObject((PhysicsGhostObject) obj);
} else if (obj instanceof PhysicsRigidBody) {
removeRigidBody((PhysicsRigidBody) obj);
} else if (obj instanceof PhysicsCharacter) {
removeCharacter((PhysicsCharacter) obj);
}
}
/**
* adds all physics controls and joints in the given spatial node to the physics space
* (e.g. after loading from disk) - recursive if node
* @param spatial the rootnode containing the physics objects
*/
public void addAll(Spatial spatial) {
add(spatial);
if (spatial.getControl(RigidBodyControl.class) != null) {
RigidBodyControl physicsNode = spatial.getControl(RigidBodyControl.class);
//add joints with physicsNode as BodyA
List<PhysicsJoint> joints = physicsNode.getJoints();
for (Iterator<PhysicsJoint> it1 = joints.iterator(); it1.hasNext();) {
PhysicsJoint physicsJoint = it1.next();
if (physicsNode.equals(physicsJoint.getBodyA())) {
//add(physicsJoint.getBodyB());
add(physicsJoint);
}
}
}
//recursion
if (spatial instanceof Node) {
List<Spatial> children = ((Node) spatial).getChildren();
for (Iterator<Spatial> it = children.iterator(); it.hasNext();) {
Spatial spat = it.next();
addAll(spat);
}
}
}
/**
* Removes all physics controls and joints in the given spatial from the physics space
* (e.g. before saving to disk) - recursive if node
* @param spatial the rootnode containing the physics objects
*/
public void removeAll(Spatial spatial) {
if (spatial.getControl(RigidBodyControl.class) != null) {
RigidBodyControl physicsNode = spatial.getControl(RigidBodyControl.class);
//remove joints with physicsNode as BodyA
List<PhysicsJoint> joints = physicsNode.getJoints();
for (Iterator<PhysicsJoint> it1 = joints.iterator(); it1.hasNext();) {
PhysicsJoint physicsJoint = it1.next();
if (physicsNode.equals(physicsJoint.getBodyA())) {
removeJoint(physicsJoint);
//remove(physicsJoint.getBodyB());
}
}
}
remove(spatial);
//recursion
if (spatial instanceof Node) {
List<Spatial> children = ((Node) spatial).getChildren();
for (Iterator<Spatial> it = children.iterator(); it.hasNext();) {
Spatial spat = it.next();
removeAll(spat);
}
}
}
private native void addCollisionObject(long space, long id);
private native void removeCollisionObject(long space, long id);
private native void addRigidBody(long space, long id);
private native void removeRigidBody(long space, long id);
private native void addCharacterObject(long space, long id);
private native void removeCharacterObject(long space, long id);
private native void addAction(long space, long id);
private native void removeAction(long space, long id);
private native void addVehicle(long space, long id);
private native void removeVehicle(long space, long id);
private native void addConstraint(long space, long id);
private native void addConstraintC(long space, long id, boolean collision);
private native void removeConstraint(long space, long id);
private void addGhostObject(PhysicsGhostObject node) {
if (physicsGhostObjects.containsKey(node.getObjectId())) {
logger.log(Level.WARNING, "GhostObject {0} already exists in PhysicsSpace, cannot add.", node);
return;
}
physicsGhostObjects.put(node.getObjectId(), node);
logger.log(Level.FINE, "Adding ghost object {0} to physics space.", Long.toHexString(node.getObjectId()));
addCollisionObject(physicsSpaceId, node.getObjectId());
}
private void removeGhostObject(PhysicsGhostObject node) {
if (!physicsGhostObjects.containsKey(node.getObjectId())) {
logger.log(Level.WARNING, "GhostObject {0} does not exist in PhysicsSpace, cannot remove.", node);
return;
}
physicsGhostObjects.remove(node.getObjectId());
logger.log(Level.FINE, "Removing ghost object {0} from physics space.", Long.toHexString(node.getObjectId()));
removeCollisionObject(physicsSpaceId, node.getObjectId());
}
private void addCharacter(PhysicsCharacter node) {
if (physicsCharacters.containsKey(node.getObjectId())) {
logger.log(Level.WARNING, "Character {0} already exists in PhysicsSpace, cannot add.", node);
return;
}
physicsCharacters.put(node.getObjectId(), node);
logger.log(Level.FINE, "Adding character {0} to physics space.", Long.toHexString(node.getObjectId()));
addCharacterObject(physicsSpaceId, node.getObjectId());
addAction(physicsSpaceId, node.getControllerId());
// dynamicsWorld.addCollisionObject(node.getObjectId(), CollisionFilterGroups.CHARACTER_FILTER, (short) (CollisionFilterGroups.STATIC_FILTER | CollisionFilterGroups.DEFAULT_FILTER));
// dynamicsWorld.addAction(node.getControllerId());
}
private void removeCharacter(PhysicsCharacter node) {
if (!physicsCharacters.containsKey(node.getObjectId())) {
logger.log(Level.WARNING, "Character {0} does not exist in PhysicsSpace, cannot remove.", node);
return;
}
physicsCharacters.remove(node.getObjectId());
logger.log(Level.FINE, "Removing character {0} from physics space.", Long.toHexString(node.getObjectId()));
removeAction(physicsSpaceId, node.getControllerId());
removeCharacterObject(physicsSpaceId, node.getObjectId());
// dynamicsWorld.removeAction(node.getControllerId());
// dynamicsWorld.removeCollisionObject(node.getObjectId());
}
private void addRigidBody(PhysicsRigidBody node) {
if (physicsBodies.containsKey(node.getObjectId())) {
logger.log(Level.WARNING, "RigidBody {0} already exists in PhysicsSpace, cannot add.", node);
return;
}
physicsBodies.put(node.getObjectId(), node);
//Workaround
//It seems that adding a Kinematic RigidBody to the dynamicWorld prevent it from being non kinematic again afterward.
//so we add it non kinematic, then set it kinematic again.
boolean kinematic = false;
if (node.isKinematic()) {
kinematic = true;
node.setKinematic(false);
}
addRigidBody(physicsSpaceId, node.getObjectId());
if (kinematic) {
node.setKinematic(true);
}
logger.log(Level.FINE, "Adding RigidBody {0} to physics space.", node.getObjectId());
if (node instanceof PhysicsVehicle) {
logger.log(Level.FINE, "Adding vehicle constraint {0} to physics space.", Long.toHexString(((PhysicsVehicle) node).getVehicleId()));
physicsVehicles.put(((PhysicsVehicle) node).getVehicleId(), (PhysicsVehicle) node);
addVehicle(physicsSpaceId, ((PhysicsVehicle) node).getVehicleId());
}
}
private void removeRigidBody(PhysicsRigidBody node) {
if (!physicsBodies.containsKey(node.getObjectId())) {
logger.log(Level.WARNING, "RigidBody {0} does not exist in PhysicsSpace, cannot remove.", node);
return;
}
if (node instanceof PhysicsVehicle) {
logger.log(Level.FINE, "Removing vehicle constraint {0} from physics space.", Long.toHexString(((PhysicsVehicle) node).getVehicleId()));
physicsVehicles.remove(((PhysicsVehicle) node).getVehicleId());
removeVehicle(physicsSpaceId, ((PhysicsVehicle) node).getVehicleId());
}
logger.log(Level.FINE, "Removing RigidBody {0} from physics space.", Long.toHexString(node.getObjectId()));
physicsBodies.remove(node.getObjectId());
removeRigidBody(physicsSpaceId, node.getObjectId());
}
private void addJoint(PhysicsJoint joint) {
if (physicsJoints.containsKey(joint.getObjectId())) {
logger.log(Level.WARNING, "Joint {0} already exists in PhysicsSpace, cannot add.", joint);
return;
}
logger.log(Level.FINE, "Adding Joint {0} to physics space.", Long.toHexString(joint.getObjectId()));
physicsJoints.put(joint.getObjectId(), joint);
addConstraintC(physicsSpaceId, joint.getObjectId(), !joint.isCollisionBetweenLinkedBodys());
// dynamicsWorld.addConstraint(joint.getObjectId(), !joint.isCollisionBetweenLinkedBodys());
}
private void removeJoint(PhysicsJoint joint) {
if (!physicsJoints.containsKey(joint.getObjectId())) {
logger.log(Level.WARNING, "Joint {0} does not exist in PhysicsSpace, cannot remove.", joint);
return;
}
logger.log(Level.FINE, "Removing Joint {0} from physics space.", Long.toHexString(joint.getObjectId()));
physicsJoints.remove(joint.getObjectId());
removeConstraint(physicsSpaceId, joint.getObjectId());
// dynamicsWorld.removeConstraint(joint.getObjectId());
}
public Collection<PhysicsRigidBody> getRigidBodyList() {
return new LinkedList<PhysicsRigidBody>(physicsBodies.values());
}
public Collection<PhysicsGhostObject> getGhostObjectList() {
return new LinkedList<PhysicsGhostObject>(physicsGhostObjects.values());
}
public Collection<PhysicsCharacter> getCharacterList() {
return new LinkedList<PhysicsCharacter>(physicsCharacters.values());
}
public Collection<PhysicsJoint> getJointList() {
return new LinkedList<PhysicsJoint>(physicsJoints.values());
}
public Collection<PhysicsVehicle> getVehicleList() {
return new LinkedList<PhysicsVehicle>(physicsVehicles.values());
}
/**
* Sets the gravity of the PhysicsSpace, set before adding physics objects!
*
* @param gravity
*/
public void setGravity(Vector3f gravity) {
this.gravity.set(gravity);
setGravity(physicsSpaceId, gravity);
}
private native void setGravity(long spaceId, Vector3f gravity);
//TODO: getGravity
private final Vector3f gravity = new Vector3f(0,-9.81f,0);
public Vector3f getGravity(Vector3f gravity) {
return gravity.set(this.gravity);
}
// /**
// * applies gravity value to all objects
// */
// public void applyGravity() {
//// dynamicsWorld.applyGravity();
// }
//
// /**
// * clears forces of all objects
// */
// public void clearForces() {
//// dynamicsWorld.clearForces();
// }
//
/**
* Adds the specified listener to the physics tick listeners. The listeners
* are called on each physics step, which is not necessarily each frame but
* is determined by the accuracy of the physics space.
*
* @param listener
*/
public void addTickListener(PhysicsTickListener listener) {
tickListeners.add(listener);
}
public void removeTickListener(PhysicsTickListener listener) {
tickListeners.remove(listener);
}
/**
* Adds a CollisionListener that will be informed about collision events
*
* @param listener the CollisionListener to add
*/
public void addCollisionListener(PhysicsCollisionListener listener) {
collisionListeners.add(listener);
}
/**
* Removes a CollisionListener from the list
*
* @param listener the CollisionListener to remove
*/
public void removeCollisionListener(PhysicsCollisionListener listener) {
collisionListeners.remove(listener);
}
/**
* Adds a listener for a specific collision group, such a listener can
* disable collisions when they happen.<br> There can be only one listener
* per collision group.
*
* @param listener
* @param collisionGroup
*/
public void addCollisionGroupListener(PhysicsCollisionGroupListener listener, int collisionGroup) {
collisionGroupListeners.put(collisionGroup, listener);
}
public void removeCollisionGroupListener(int collisionGroup) {
collisionGroupListeners.remove(collisionGroup);
}
/**
* Performs a ray collision test and returns the results as a list of
* PhysicsRayTestResults ordered by it hitFraction (lower to higher)
*/
public List rayTest(Vector3f from, Vector3f to) {
List<PhysicsRayTestResult> results = new ArrayList<PhysicsRayTestResult>();
rayTest(from, to, results);
return results;
}
/**
* Performs a ray collision test and returns the results as a list of
* PhysicsRayTestResults without performing any sort operation
*/
public List rayTestRaw(Vector3f from, Vector3f to) {
List<PhysicsRayTestResult> results = new ArrayList<PhysicsRayTestResult>();
rayTestRaw(from, to, results);
return results;
}
/**
* Sets m_flags for raytest, see https://code.google.com/p/bullet/source/browse/trunk/src/BulletCollision/NarrowPhaseCollision/btRaycastCallback.h
* for possible options. Defaults to using the faster, approximate raytest.
*/
public void SetRayTestFlags(int flags) {
rayTestFlags = flags;
}
/**
* Gets m_flags for raytest, see https://code.google.com/p/bullet/source/browse/trunk/src/BulletCollision/NarrowPhaseCollision/btRaycastCallback.h
* for possible options.
* @return rayTestFlags
*/
public int GetRayTestFlags() {
return rayTestFlags;
}
private static Comparator<PhysicsRayTestResult> hitFractionComparator = new Comparator<PhysicsRayTestResult>() {
@Override
public int compare(PhysicsRayTestResult r1, PhysicsRayTestResult r2) {
float comp = r1.getHitFraction() - r2.getHitFraction();
return comp > 0 ? 1 : -1;
}
};
/**
* Performs a ray collision test and returns the results as a list of
* PhysicsRayTestResults ordered by it hitFraction (lower to higher)
*/
public List<PhysicsRayTestResult> rayTest(Vector3f from, Vector3f to, List<PhysicsRayTestResult> results) {
results.clear();
rayTest_native(from, to, physicsSpaceId, results, rayTestFlags);
Collections.sort(results, hitFractionComparator);
return results;
}
/**
* Performs a ray collision test and returns the results as a list of
* PhysicsRayTestResults without performing any sort operation
*/
public List<PhysicsRayTestResult> rayTestRaw(Vector3f from, Vector3f to, List<PhysicsRayTestResult> results) {
results.clear();
rayTest_native(from, to, physicsSpaceId, results, rayTestFlags);
return results;
}
public native void rayTest_native(Vector3f from, Vector3f to, long physicsSpaceId, List<PhysicsRayTestResult> results, int flags);
// private class InternalRayListener extends CollisionWorld.RayResultCallback {
//
// private List<PhysicsRayTestResult> results;
//
// public InternalRayListener(List<PhysicsRayTestResult> results) {
// this.results = results;
// }
//
// @Override
// public float addSingleResult(LocalRayResult lrr, boolean bln) {
// PhysicsCollisionObject obj = (PhysicsCollisionObject) lrr.collisionObject.getUserPointer();
// results.add(new PhysicsRayTestResult(obj, Converter.convert(lrr.hitNormalLocal), lrr.hitFraction, bln));
// return lrr.hitFraction;
// }
// }
//
//
/**
* Performs a sweep collision test and returns the results as a list of
* PhysicsSweepTestResults<br/> You have to use different Transforms for
* start and end (at least distance > 0.4f). SweepTest will not see a
* collision if it starts INSIDE an object and is moving AWAY from its
* center.
*/
public List<PhysicsSweepTestResult> sweepTest(CollisionShape shape, Transform start, Transform end) {
List results = new LinkedList();
sweepTest(shape, start, end , results);
return (List<PhysicsSweepTestResult>) results;
}
public List<PhysicsSweepTestResult> sweepTest(CollisionShape shape, Transform start, Transform end, List<PhysicsSweepTestResult> results) {
return sweepTest(shape, start, end, results, 0.0f);
}
public native void sweepTest_native(long shape, Transform from, Transform to, long physicsSpaceId, List<PhysicsSweepTestResult> results, float allowedCcdPenetration);
/**
* Performs a sweep collision test and returns the results as a list of
* PhysicsSweepTestResults<br/> You have to use different Transforms for
* start and end (at least distance > allowedCcdPenetration). SweepTest will not see a
* collision if it starts INSIDE an object and is moving AWAY from its
* center.
*/
public List<PhysicsSweepTestResult> sweepTest(CollisionShape shape, Transform start, Transform end, List<PhysicsSweepTestResult> results, float allowedCcdPenetration ) {
results.clear();
sweepTest_native(shape.getObjectId(), start, end, physicsSpaceId, results, allowedCcdPenetration);
return results;
}
/* private class InternalSweepListener extends CollisionWorld.ConvexResultCallback {
private List<PhysicsSweepTestResult> results;
public InternalSweepListener(List<PhysicsSweepTestResult> results) {
this.results = results;
}
@Override
public float addSingleResult(LocalConvexResult lcr, boolean bln) {
PhysicsCollisionObject obj = (PhysicsCollisionObject) lcr.hitCollisionObject.getUserPointer();
results.add(new PhysicsSweepTestResult(obj, Converter.convert(lcr.hitNormalLocal), lcr.hitFraction, bln));
return lcr.hitFraction;
}
}
*/
/**
* destroys the current PhysicsSpace so that a new one can be created
*/
public void destroy() {
physicsBodies.clear();
physicsJoints.clear();
// dynamicsWorld.destroy();
// dynamicsWorld = null;
}
/**
* // * used internally //
*
* @return the dynamicsWorld //
*/
public long getSpaceId() {
return physicsSpaceId;
}
public BroadphaseType getBroadphaseType() {
return broadphaseType;
}
public void setBroadphaseType(BroadphaseType broadphaseType) {
this.broadphaseType = broadphaseType;
}
/**
* Sets the maximum amount of extra steps that will be used to step the
* physics when the fps is below the physics fps. Doing this maintains
* determinism in physics. For example a maximum number of 2 can compensate
* for framerates as low as 30fps when the physics has the default accuracy
* of 60 fps. Note that setting this value too high can make the physics
* drive down its own fps in case its overloaded.
*
* @param steps The maximum number of extra steps, default is 4.
*/
public void setMaxSubSteps(int steps) {
maxSubSteps = steps;
}
/**
* get the current accuracy of the physics computation
*
* @return the current accuracy
*/
public float getAccuracy() {
return accuracy;
}
/**
* sets the accuracy of the physics computation, default=1/60s<br>
*
* @param accuracy
*/
public void setAccuracy(float accuracy) {
this.accuracy = accuracy;
}
public Vector3f getWorldMin() {
return worldMin;
}
/**
* only applies for AXIS_SWEEP broadphase
*
* @param worldMin
*/
public void setWorldMin(Vector3f worldMin) {
this.worldMin.set(worldMin);
}
public Vector3f getWorldMax() {
return worldMax;
}
/**
* only applies for AXIS_SWEEP broadphase
*
* @param worldMax
*/
public void setWorldMax(Vector3f worldMax) {
this.worldMax.set(worldMax);
}
/**
* Set the number of iterations used by the contact solver.
*
* The default is 10. Use 4 for low quality, 20 for high quality.
*
* @param numIterations The number of iterations used by the contact & constraint solver.
*/
public void setSolverNumIterations(int numIterations) {
this.solverNumIterations = numIterations;
setSolverNumIterations(physicsSpaceId, numIterations);
}
/**
* Get the number of iterations used by the contact solver.
*
* @return The number of iterations used by the contact & constraint solver.
*/
public int getSolverNumIterations() {
return solverNumIterations;
}
private native void setSolverNumIterations(long physicsSpaceId, int numIterations);
public static native void initNativePhysics();
/**
* interface with Broadphase types
*/
public enum BroadphaseType {
/**
* basic Broadphase
*/
SIMPLE,
/**
* better Broadphase, needs worldBounds , max Object number = 16384
*/
AXIS_SWEEP_3,
/**
* better Broadphase, needs worldBounds , max Object number = 65536
*/
AXIS_SWEEP_3_32,
/**
* Broadphase allowing quicker adding/removing of physics objects
*/
DBVT;
}
@Override
protected void finalize() throws Throwable {
super.finalize();
Logger.getLogger(this.getClass().getName()).log(Level.FINE, "Finalizing PhysicsSpace {0}", Long.toHexString(physicsSpaceId));
finalizeNative(physicsSpaceId);
}
private native void finalizeNative(long objectId);
}