/* * Copyright (c) 2009-2012 jMonkeyEngine * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'jMonkeyEngine' nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package com.jme3.bullet; import com.jme3.app.AppTask; import com.jme3.asset.AssetManager; import com.jme3.bullet.collision.*; import com.jme3.bullet.collision.shapes.CollisionShape; import com.jme3.bullet.control.PhysicsControl; import com.jme3.bullet.control.RigidBodyControl; import com.jme3.bullet.joints.PhysicsJoint; import com.jme3.bullet.objects.PhysicsCharacter; import com.jme3.bullet.objects.PhysicsGhostObject; import com.jme3.bullet.objects.PhysicsRigidBody; import com.jme3.bullet.objects.PhysicsVehicle; import com.jme3.math.Transform; import com.jme3.math.Vector3f; import com.jme3.scene.Node; import com.jme3.scene.Spatial; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Comparator; import java.util.concurrent.Callable; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentLinkedQueue; import java.util.concurrent.Future; import java.util.logging.Level; import java.util.logging.Logger; /** * <p>PhysicsSpace - The central jbullet-jme physics space</p> * * @author normenhansen */ public class PhysicsSpace { private static final Logger logger = Logger.getLogger(PhysicsSpace.class.getName()); public static final int AXIS_X = 0; public static final int AXIS_Y = 1; public static final int AXIS_Z = 2; private long physicsSpaceId = 0; private static ThreadLocal<ConcurrentLinkedQueue<AppTask<?>>> pQueueTL = new ThreadLocal<ConcurrentLinkedQueue<AppTask<?>>>() { @Override protected ConcurrentLinkedQueue<AppTask<?>> initialValue() { return new ConcurrentLinkedQueue<AppTask<?>>(); } }; private ConcurrentLinkedQueue<AppTask<?>> pQueue = new ConcurrentLinkedQueue<AppTask<?>>(); private static ThreadLocal<PhysicsSpace> physicsSpaceTL = new ThreadLocal<PhysicsSpace>(); private BroadphaseType broadphaseType = BroadphaseType.DBVT; // private DiscreteDynamicsWorld dynamicsWorld = null; // private BroadphaseInterface broadphase; // private CollisionDispatcher dispatcher; // private ConstraintSolver solver; // private DefaultCollisionConfiguration collisionConfiguration; // private Map<GhostObject, PhysicsGhostObject> physicsGhostNodes = new ConcurrentHashMap<GhostObject, PhysicsGhostObject>(); private Map<Long, PhysicsGhostObject> physicsGhostObjects = new ConcurrentHashMap<Long, PhysicsGhostObject>(); private Map<Long, PhysicsCharacter> physicsCharacters = new ConcurrentHashMap<Long, PhysicsCharacter>(); private Map<Long, PhysicsRigidBody> physicsBodies = new ConcurrentHashMap<Long, PhysicsRigidBody>(); private Map<Long, PhysicsJoint> physicsJoints = new ConcurrentHashMap<Long, PhysicsJoint>(); private Map<Long, PhysicsVehicle> physicsVehicles = new ConcurrentHashMap<Long, PhysicsVehicle>(); private ArrayList<PhysicsCollisionListener> collisionListeners = new ArrayList<PhysicsCollisionListener>(); private ArrayDeque<PhysicsCollisionEvent> collisionEvents = new ArrayDeque<PhysicsCollisionEvent>(); private Map<Integer, PhysicsCollisionGroupListener> collisionGroupListeners = new ConcurrentHashMap<Integer, PhysicsCollisionGroupListener>(); private ConcurrentLinkedQueue<PhysicsTickListener> tickListeners = new ConcurrentLinkedQueue<PhysicsTickListener>(); private PhysicsCollisionEventFactory eventFactory = new PhysicsCollisionEventFactory(); private Vector3f worldMin = new Vector3f(-10000f, -10000f, -10000f); private Vector3f worldMax = new Vector3f(10000f, 10000f, 10000f); private float accuracy = 1f / 60f; private int maxSubSteps = 4, rayTestFlags = 1 << 2; private int solverNumIterations = 10; static { // System.loadLibrary("bulletjme"); // initNativePhysics(); } /** * Get the current PhysicsSpace <b>running on this thread</b><br/> For * parallel physics, this can also be called from the OpenGL thread to * receive the PhysicsSpace * * @return the PhysicsSpace running on this thread */ public static PhysicsSpace getPhysicsSpace() { return physicsSpaceTL.get(); } /** * Used internally * * @param space */ public static void setLocalThreadPhysicsSpace(PhysicsSpace space) { physicsSpaceTL.set(space); } public PhysicsSpace() { this(new Vector3f(-10000f, -10000f, -10000f), new Vector3f(10000f, 10000f, 10000f), BroadphaseType.DBVT); } public PhysicsSpace(BroadphaseType broadphaseType) { this(new Vector3f(-10000f, -10000f, -10000f), new Vector3f(10000f, 10000f, 10000f), broadphaseType); } public PhysicsSpace(Vector3f worldMin, Vector3f worldMax) { this(worldMin, worldMax, BroadphaseType.AXIS_SWEEP_3); } public PhysicsSpace(Vector3f worldMin, Vector3f worldMax, BroadphaseType broadphaseType) { this.worldMin.set(worldMin); this.worldMax.set(worldMax); this.broadphaseType = broadphaseType; create(); } /** * Has to be called from the (designated) physics thread */ public void create() { physicsSpaceId = createPhysicsSpace(worldMin.x, worldMin.y, worldMin.z, worldMax.x, worldMax.y, worldMax.z, broadphaseType.ordinal(), false); pQueueTL.set(pQueue); physicsSpaceTL.set(this); // collisionConfiguration = new DefaultCollisionConfiguration(); // dispatcher = new CollisionDispatcher(collisionConfiguration); // switch (broadphaseType) { // case SIMPLE: // broadphase = new SimpleBroadphase(); // break; // case AXIS_SWEEP_3: // broadphase = new AxisSweep3(Converter.convert(worldMin), Converter.convert(worldMax)); // break; // case AXIS_SWEEP_3_32: // broadphase = new AxisSweep3_32(Converter.convert(worldMin), Converter.convert(worldMax)); // break; // case DBVT: // broadphase = new DbvtBroadphase(); // break; // } // // solver = new SequentialImpulseConstraintSolver(); // // dynamicsWorld = new DiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration); // dynamicsWorld.setGravity(new javax.vecmath.Vector3f(0, -9.81f, 0)); // // broadphase.getOverlappingPairCache().setInternalGhostPairCallback(new GhostPairCallback()); // GImpactCollisionAlgorithm.registerAlgorithm(dispatcher); // // //register filter callback for tick / collision // setTickCallback(); // setContactCallbacks(); // //register filter callback for collision groups // setOverlapFilterCallback(); } private native long createPhysicsSpace(float minX, float minY, float minZ, float maxX, float maxY, float maxZ, int broadphaseType, boolean threading); private void preTick_native(float f) { AppTask task = pQueue.poll(); task = pQueue.poll(); while (task != null) { while (task.isCancelled()) { task = pQueue.poll(); } try { task.invoke(); } catch (Exception ex) { logger.log(Level.SEVERE, null, ex); } task = pQueue.poll(); } for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) { PhysicsTickListener physicsTickCallback = it.next(); physicsTickCallback.prePhysicsTick(this, f); } } private void postTick_native(float f) { for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) { PhysicsTickListener physicsTickCallback = it.next(); physicsTickCallback.physicsTick(this, f); } } private void addCollision_native() { } private boolean needCollision_native(PhysicsCollisionObject objectA, PhysicsCollisionObject objectB) { return false; } // private void setOverlapFilterCallback() { // OverlapFilterCallback callback = new OverlapFilterCallback() { // // public boolean needBroadphaseCollision(BroadphaseProxy bp, BroadphaseProxy bp1) { // boolean collides = (bp.collisionFilterGroup & bp1.collisionFilterMask) != 0; // if (collides) { // collides = (bp1.collisionFilterGroup & bp.collisionFilterMask) != 0; // } // if (collides) { // assert (bp.clientObject instanceof com.bulletphysics.collision.dispatch.CollisionObject && bp.clientObject instanceof com.bulletphysics.collision.dispatch.CollisionObject); // com.bulletphysics.collision.dispatch.CollisionObject colOb = (com.bulletphysics.collision.dispatch.CollisionObject) bp.clientObject; // com.bulletphysics.collision.dispatch.CollisionObject colOb1 = (com.bulletphysics.collision.dispatch.CollisionObject) bp1.clientObject; // assert (colOb.getUserPointer() != null && colOb1.getUserPointer() != null); // PhysicsCollisionObject collisionObject = (PhysicsCollisionObject) colOb.getUserPointer(); // PhysicsCollisionObject collisionObject1 = (PhysicsCollisionObject) colOb1.getUserPointer(); // if ((collisionObject.getCollideWithGroups() & collisionObject1.getCollisionGroup()) > 0 // || (collisionObject1.getCollideWithGroups() & collisionObject.getCollisionGroup()) > 0) { // PhysicsCollisionGroupListener listener = collisionGroupListeners.get(collisionObject.getCollisionGroup()); // PhysicsCollisionGroupListener listener1 = collisionGroupListeners.get(collisionObject1.getCollisionGroup()); // if (listener != null) { // return listener.collide(collisionObject, collisionObject1); // } else if (listener1 != null) { // return listener1.collide(collisionObject, collisionObject1); // } // return true; // } else { // return false; // } // } // return collides; // } // }; // dynamicsWorld.getPairCache().setOverlapFilterCallback(callback); // } // private void setTickCallback() { // final PhysicsSpace space = this; // InternalTickCallback callback2 = new InternalTickCallback() { // // @Override // public void internalTick(DynamicsWorld dw, float f) { // //execute task list // AppTask task = pQueue.poll(); // task = pQueue.poll(); // while (task != null) { // while (task.isCancelled()) { // task = pQueue.poll(); // } // try { // task.invoke(); // } catch (Exception ex) { // logger.log(Level.SEVERE, null, ex); // } // task = pQueue.poll(); // } // for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) { // PhysicsTickListener physicsTickCallback = it.next(); // physicsTickCallback.prePhysicsTick(space, f); // } // } // }; // dynamicsWorld.setPreTickCallback(callback2); // InternalTickCallback callback = new InternalTickCallback() { // // @Override // public void internalTick(DynamicsWorld dw, float f) { // for (Iterator<PhysicsTickListener> it = tickListeners.iterator(); it.hasNext();) { // PhysicsTickListener physicsTickCallback = it.next(); // physicsTickCallback.physicsTick(space, f); // } // } // }; // dynamicsWorld.setInternalTickCallback(callback, this); // } // private void setContactCallbacks() { // BulletGlobals.setContactAddedCallback(new ContactAddedCallback() { // // public boolean contactAdded(ManifoldPoint cp, com.bulletphysics.collision.dispatch.CollisionObject colObj0, // int partId0, int index0, com.bulletphysics.collision.dispatch.CollisionObject colObj1, int partId1, // int index1) { // System.out.println("contact added"); // return true; // } // }); // // BulletGlobals.setContactProcessedCallback(new ContactProcessedCallback() { // // public boolean contactProcessed(ManifoldPoint cp, Object body0, Object body1) { // if (body0 instanceof CollisionObject && body1 instanceof CollisionObject) { // PhysicsCollisionObject node = null, node1 = null; // CollisionObject rBody0 = (CollisionObject) body0; // CollisionObject rBody1 = (CollisionObject) body1; // node = (PhysicsCollisionObject) rBody0.getUserPointer(); // node1 = (PhysicsCollisionObject) rBody1.getUserPointer(); // collisionEvents.add(eventFactory.getEvent(PhysicsCollisionEvent.TYPE_PROCESSED, node, node1, cp)); // } // return true; // } // }); // // BulletGlobals.setContactDestroyedCallback(new ContactDestroyedCallback() { // // public boolean contactDestroyed(Object userPersistentData) { // System.out.println("contact destroyed"); // return true; // } // }); // } private void addCollisionEvent_native(PhysicsCollisionObject node, PhysicsCollisionObject node1, long manifoldPointObjectId) { // System.out.println("addCollisionEvent:"+node.getObjectId()+" "+ node1.getObjectId()); collisionEvents.add(eventFactory.getEvent(PhysicsCollisionEvent.TYPE_PROCESSED, node, node1, manifoldPointObjectId)); } private boolean notifyCollisionGroupListeners_native(PhysicsCollisionObject node, PhysicsCollisionObject node1){ PhysicsCollisionGroupListener listener = collisionGroupListeners.get(node.getCollisionGroup()); PhysicsCollisionGroupListener listener1 = collisionGroupListeners.get(node1.getCollisionGroup()); boolean result = true; if(listener != null){ result = listener.collide(node, node1); } if(listener1 != null && node.getCollisionGroup() != node1.getCollisionGroup()){ result = listener1.collide(node, node1) && result; } return result; } /** * updates the physics space * * @param time the current time value */ public void update(float time) { update(time, maxSubSteps); } /** * updates the physics space, uses maxSteps<br> * * @param time the current time value * @param maxSteps */ public void update(float time, int maxSteps) { // if (getDynamicsWorld() == null) { // return; // } //step simulation stepSimulation(physicsSpaceId, time, maxSteps, accuracy); } private native void stepSimulation(long space, float time, int maxSteps, float accuracy); public void distributeEvents() { //add collision callbacks int clistsize = collisionListeners.size(); while( collisionEvents.isEmpty() == false ) { PhysicsCollisionEvent physicsCollisionEvent = collisionEvents.pop(); for(int i=0;i<clistsize;i++) { collisionListeners.get(i).collision(physicsCollisionEvent); } //recycle events eventFactory.recycle(physicsCollisionEvent); } } public static <V> Future<V> enqueueOnThisThread(Callable<V> callable) { AppTask<V> task = new AppTask<V>(callable); System.out.println("created apptask"); pQueueTL.get().add(task); return task; } /** * calls the callable on the next physics tick (ensuring e.g. force * applying) * * @param <V> * @param callable * @return Future object */ public <V> Future<V> enqueue(Callable<V> callable) { AppTask<V> task = new AppTask<V>(callable); pQueue.add(task); return task; } /** * adds an object to the physics space * * @param obj the PhysicsControl or Spatial with PhysicsControl to add */ public void add(Object obj) { if (obj instanceof PhysicsControl) { ((PhysicsControl) obj).setPhysicsSpace(this); } else if (obj instanceof Spatial) { Spatial node = (Spatial) obj; for (int i = 0; i < node.getNumControls(); i++) { if (node.getControl(i) instanceof PhysicsControl) { add(((PhysicsControl) node.getControl(i))); } } } else if (obj instanceof PhysicsCollisionObject) { addCollisionObject((PhysicsCollisionObject) obj); } else if (obj instanceof PhysicsJoint) { addJoint((PhysicsJoint) obj); } else { throw (new UnsupportedOperationException("Cannot add this kind of object to the physics space.")); } } public void addCollisionObject(PhysicsCollisionObject obj) { if (obj instanceof PhysicsGhostObject) { addGhostObject((PhysicsGhostObject) obj); } else if (obj instanceof PhysicsRigidBody) { addRigidBody((PhysicsRigidBody) obj); } else if (obj instanceof PhysicsVehicle) { addRigidBody((PhysicsVehicle) obj); } else if (obj instanceof PhysicsCharacter) { addCharacter((PhysicsCharacter) obj); } } /** * removes an object from the physics space * * @param obj the PhysicsControl or Spatial with PhysicsControl to remove */ public void remove(Object obj) { if (obj == null) return; if (obj instanceof PhysicsControl) { ((PhysicsControl) obj).setPhysicsSpace(null); } else if (obj instanceof Spatial) { Spatial node = (Spatial) obj; for (int i = 0; i < node.getNumControls(); i++) { if (node.getControl(i) instanceof PhysicsControl) { remove(((PhysicsControl) node.getControl(i))); } } } else if (obj instanceof PhysicsCollisionObject) { removeCollisionObject((PhysicsCollisionObject) obj); } else if (obj instanceof PhysicsJoint) { removeJoint((PhysicsJoint) obj); } else { throw (new UnsupportedOperationException("Cannot remove this kind of object from the physics space.")); } } public void removeCollisionObject(PhysicsCollisionObject obj) { if (obj instanceof PhysicsGhostObject) { removeGhostObject((PhysicsGhostObject) obj); } else if (obj instanceof PhysicsRigidBody) { removeRigidBody((PhysicsRigidBody) obj); } else if (obj instanceof PhysicsCharacter) { removeCharacter((PhysicsCharacter) obj); } } /** * adds all physics controls and joints in the given spatial node to the physics space * (e.g. after loading from disk) - recursive if node * @param spatial the rootnode containing the physics objects */ public void addAll(Spatial spatial) { add(spatial); if (spatial.getControl(RigidBodyControl.class) != null) { RigidBodyControl physicsNode = spatial.getControl(RigidBodyControl.class); //add joints with physicsNode as BodyA List<PhysicsJoint> joints = physicsNode.getJoints(); for (Iterator<PhysicsJoint> it1 = joints.iterator(); it1.hasNext();) { PhysicsJoint physicsJoint = it1.next(); if (physicsNode.equals(physicsJoint.getBodyA())) { //add(physicsJoint.getBodyB()); add(physicsJoint); } } } //recursion if (spatial instanceof Node) { List<Spatial> children = ((Node) spatial).getChildren(); for (Iterator<Spatial> it = children.iterator(); it.hasNext();) { Spatial spat = it.next(); addAll(spat); } } } /** * Removes all physics controls and joints in the given spatial from the physics space * (e.g. before saving to disk) - recursive if node * @param spatial the rootnode containing the physics objects */ public void removeAll(Spatial spatial) { if (spatial.getControl(RigidBodyControl.class) != null) { RigidBodyControl physicsNode = spatial.getControl(RigidBodyControl.class); //remove joints with physicsNode as BodyA List<PhysicsJoint> joints = physicsNode.getJoints(); for (Iterator<PhysicsJoint> it1 = joints.iterator(); it1.hasNext();) { PhysicsJoint physicsJoint = it1.next(); if (physicsNode.equals(physicsJoint.getBodyA())) { removeJoint(physicsJoint); //remove(physicsJoint.getBodyB()); } } } remove(spatial); //recursion if (spatial instanceof Node) { List<Spatial> children = ((Node) spatial).getChildren(); for (Iterator<Spatial> it = children.iterator(); it.hasNext();) { Spatial spat = it.next(); removeAll(spat); } } } private native void addCollisionObject(long space, long id); private native void removeCollisionObject(long space, long id); private native void addRigidBody(long space, long id); private native void removeRigidBody(long space, long id); private native void addCharacterObject(long space, long id); private native void removeCharacterObject(long space, long id); private native void addAction(long space, long id); private native void removeAction(long space, long id); private native void addVehicle(long space, long id); private native void removeVehicle(long space, long id); private native void addConstraint(long space, long id); private native void addConstraintC(long space, long id, boolean collision); private native void removeConstraint(long space, long id); private void addGhostObject(PhysicsGhostObject node) { if (physicsGhostObjects.containsKey(node.getObjectId())) { logger.log(Level.WARNING, "GhostObject {0} already exists in PhysicsSpace, cannot add.", node); return; } physicsGhostObjects.put(node.getObjectId(), node); logger.log(Level.FINE, "Adding ghost object {0} to physics space.", Long.toHexString(node.getObjectId())); addCollisionObject(physicsSpaceId, node.getObjectId()); } private void removeGhostObject(PhysicsGhostObject node) { if (!physicsGhostObjects.containsKey(node.getObjectId())) { logger.log(Level.WARNING, "GhostObject {0} does not exist in PhysicsSpace, cannot remove.", node); return; } physicsGhostObjects.remove(node.getObjectId()); logger.log(Level.FINE, "Removing ghost object {0} from physics space.", Long.toHexString(node.getObjectId())); removeCollisionObject(physicsSpaceId, node.getObjectId()); } private void addCharacter(PhysicsCharacter node) { if (physicsCharacters.containsKey(node.getObjectId())) { logger.log(Level.WARNING, "Character {0} already exists in PhysicsSpace, cannot add.", node); return; } physicsCharacters.put(node.getObjectId(), node); logger.log(Level.FINE, "Adding character {0} to physics space.", Long.toHexString(node.getObjectId())); addCharacterObject(physicsSpaceId, node.getObjectId()); addAction(physicsSpaceId, node.getControllerId()); // dynamicsWorld.addCollisionObject(node.getObjectId(), CollisionFilterGroups.CHARACTER_FILTER, (short) (CollisionFilterGroups.STATIC_FILTER | CollisionFilterGroups.DEFAULT_FILTER)); // dynamicsWorld.addAction(node.getControllerId()); } private void removeCharacter(PhysicsCharacter node) { if (!physicsCharacters.containsKey(node.getObjectId())) { logger.log(Level.WARNING, "Character {0} does not exist in PhysicsSpace, cannot remove.", node); return; } physicsCharacters.remove(node.getObjectId()); logger.log(Level.FINE, "Removing character {0} from physics space.", Long.toHexString(node.getObjectId())); removeAction(physicsSpaceId, node.getControllerId()); removeCharacterObject(physicsSpaceId, node.getObjectId()); // dynamicsWorld.removeAction(node.getControllerId()); // dynamicsWorld.removeCollisionObject(node.getObjectId()); } private void addRigidBody(PhysicsRigidBody node) { if (physicsBodies.containsKey(node.getObjectId())) { logger.log(Level.WARNING, "RigidBody {0} already exists in PhysicsSpace, cannot add.", node); return; } physicsBodies.put(node.getObjectId(), node); //Workaround //It seems that adding a Kinematic RigidBody to the dynamicWorld prevent it from being non kinematic again afterward. //so we add it non kinematic, then set it kinematic again. boolean kinematic = false; if (node.isKinematic()) { kinematic = true; node.setKinematic(false); } addRigidBody(physicsSpaceId, node.getObjectId()); if (kinematic) { node.setKinematic(true); } logger.log(Level.FINE, "Adding RigidBody {0} to physics space.", node.getObjectId()); if (node instanceof PhysicsVehicle) { logger.log(Level.FINE, "Adding vehicle constraint {0} to physics space.", Long.toHexString(((PhysicsVehicle) node).getVehicleId())); physicsVehicles.put(((PhysicsVehicle) node).getVehicleId(), (PhysicsVehicle) node); addVehicle(physicsSpaceId, ((PhysicsVehicle) node).getVehicleId()); } } private void removeRigidBody(PhysicsRigidBody node) { if (!physicsBodies.containsKey(node.getObjectId())) { logger.log(Level.WARNING, "RigidBody {0} does not exist in PhysicsSpace, cannot remove.", node); return; } if (node instanceof PhysicsVehicle) { logger.log(Level.FINE, "Removing vehicle constraint {0} from physics space.", Long.toHexString(((PhysicsVehicle) node).getVehicleId())); physicsVehicles.remove(((PhysicsVehicle) node).getVehicleId()); removeVehicle(physicsSpaceId, ((PhysicsVehicle) node).getVehicleId()); } logger.log(Level.FINE, "Removing RigidBody {0} from physics space.", Long.toHexString(node.getObjectId())); physicsBodies.remove(node.getObjectId()); removeRigidBody(physicsSpaceId, node.getObjectId()); } private void addJoint(PhysicsJoint joint) { if (physicsJoints.containsKey(joint.getObjectId())) { logger.log(Level.WARNING, "Joint {0} already exists in PhysicsSpace, cannot add.", joint); return; } logger.log(Level.FINE, "Adding Joint {0} to physics space.", Long.toHexString(joint.getObjectId())); physicsJoints.put(joint.getObjectId(), joint); addConstraintC(physicsSpaceId, joint.getObjectId(), !joint.isCollisionBetweenLinkedBodys()); // dynamicsWorld.addConstraint(joint.getObjectId(), !joint.isCollisionBetweenLinkedBodys()); } private void removeJoint(PhysicsJoint joint) { if (!physicsJoints.containsKey(joint.getObjectId())) { logger.log(Level.WARNING, "Joint {0} does not exist in PhysicsSpace, cannot remove.", joint); return; } logger.log(Level.FINE, "Removing Joint {0} from physics space.", Long.toHexString(joint.getObjectId())); physicsJoints.remove(joint.getObjectId()); removeConstraint(physicsSpaceId, joint.getObjectId()); // dynamicsWorld.removeConstraint(joint.getObjectId()); } public Collection<PhysicsRigidBody> getRigidBodyList() { return new LinkedList<PhysicsRigidBody>(physicsBodies.values()); } public Collection<PhysicsGhostObject> getGhostObjectList() { return new LinkedList<PhysicsGhostObject>(physicsGhostObjects.values()); } public Collection<PhysicsCharacter> getCharacterList() { return new LinkedList<PhysicsCharacter>(physicsCharacters.values()); } public Collection<PhysicsJoint> getJointList() { return new LinkedList<PhysicsJoint>(physicsJoints.values()); } public Collection<PhysicsVehicle> getVehicleList() { return new LinkedList<PhysicsVehicle>(physicsVehicles.values()); } /** * Sets the gravity of the PhysicsSpace, set before adding physics objects! * * @param gravity */ public void setGravity(Vector3f gravity) { this.gravity.set(gravity); setGravity(physicsSpaceId, gravity); } private native void setGravity(long spaceId, Vector3f gravity); //TODO: getGravity private final Vector3f gravity = new Vector3f(0,-9.81f,0); public Vector3f getGravity(Vector3f gravity) { return gravity.set(this.gravity); } // /** // * applies gravity value to all objects // */ // public void applyGravity() { //// dynamicsWorld.applyGravity(); // } // // /** // * clears forces of all objects // */ // public void clearForces() { //// dynamicsWorld.clearForces(); // } // /** * Adds the specified listener to the physics tick listeners. The listeners * are called on each physics step, which is not necessarily each frame but * is determined by the accuracy of the physics space. * * @param listener */ public void addTickListener(PhysicsTickListener listener) { tickListeners.add(listener); } public void removeTickListener(PhysicsTickListener listener) { tickListeners.remove(listener); } /** * Adds a CollisionListener that will be informed about collision events * * @param listener the CollisionListener to add */ public void addCollisionListener(PhysicsCollisionListener listener) { collisionListeners.add(listener); } /** * Removes a CollisionListener from the list * * @param listener the CollisionListener to remove */ public void removeCollisionListener(PhysicsCollisionListener listener) { collisionListeners.remove(listener); } /** * Adds a listener for a specific collision group, such a listener can * disable collisions when they happen.<br> There can be only one listener * per collision group. * * @param listener * @param collisionGroup */ public void addCollisionGroupListener(PhysicsCollisionGroupListener listener, int collisionGroup) { collisionGroupListeners.put(collisionGroup, listener); } public void removeCollisionGroupListener(int collisionGroup) { collisionGroupListeners.remove(collisionGroup); } /** * Performs a ray collision test and returns the results as a list of * PhysicsRayTestResults ordered by it hitFraction (lower to higher) */ public List rayTest(Vector3f from, Vector3f to) { List<PhysicsRayTestResult> results = new ArrayList<PhysicsRayTestResult>(); rayTest(from, to, results); return results; } /** * Performs a ray collision test and returns the results as a list of * PhysicsRayTestResults without performing any sort operation */ public List rayTestRaw(Vector3f from, Vector3f to) { List<PhysicsRayTestResult> results = new ArrayList<PhysicsRayTestResult>(); rayTestRaw(from, to, results); return results; } /** * Sets m_flags for raytest, see https://code.google.com/p/bullet/source/browse/trunk/src/BulletCollision/NarrowPhaseCollision/btRaycastCallback.h * for possible options. Defaults to using the faster, approximate raytest. */ public void SetRayTestFlags(int flags) { rayTestFlags = flags; } /** * Gets m_flags for raytest, see https://code.google.com/p/bullet/source/browse/trunk/src/BulletCollision/NarrowPhaseCollision/btRaycastCallback.h * for possible options. * @return rayTestFlags */ public int GetRayTestFlags() { return rayTestFlags; } private static Comparator<PhysicsRayTestResult> hitFractionComparator = new Comparator<PhysicsRayTestResult>() { @Override public int compare(PhysicsRayTestResult r1, PhysicsRayTestResult r2) { float comp = r1.getHitFraction() - r2.getHitFraction(); return comp > 0 ? 1 : -1; } }; /** * Performs a ray collision test and returns the results as a list of * PhysicsRayTestResults ordered by it hitFraction (lower to higher) */ public List<PhysicsRayTestResult> rayTest(Vector3f from, Vector3f to, List<PhysicsRayTestResult> results) { results.clear(); rayTest_native(from, to, physicsSpaceId, results, rayTestFlags); Collections.sort(results, hitFractionComparator); return results; } /** * Performs a ray collision test and returns the results as a list of * PhysicsRayTestResults without performing any sort operation */ public List<PhysicsRayTestResult> rayTestRaw(Vector3f from, Vector3f to, List<PhysicsRayTestResult> results) { results.clear(); rayTest_native(from, to, physicsSpaceId, results, rayTestFlags); return results; } public native void rayTest_native(Vector3f from, Vector3f to, long physicsSpaceId, List<PhysicsRayTestResult> results, int flags); // private class InternalRayListener extends CollisionWorld.RayResultCallback { // // private List<PhysicsRayTestResult> results; // // public InternalRayListener(List<PhysicsRayTestResult> results) { // this.results = results; // } // // @Override // public float addSingleResult(LocalRayResult lrr, boolean bln) { // PhysicsCollisionObject obj = (PhysicsCollisionObject) lrr.collisionObject.getUserPointer(); // results.add(new PhysicsRayTestResult(obj, Converter.convert(lrr.hitNormalLocal), lrr.hitFraction, bln)); // return lrr.hitFraction; // } // } // // /** * Performs a sweep collision test and returns the results as a list of * PhysicsSweepTestResults<br/> You have to use different Transforms for * start and end (at least distance > 0.4f). SweepTest will not see a * collision if it starts INSIDE an object and is moving AWAY from its * center. */ public List<PhysicsSweepTestResult> sweepTest(CollisionShape shape, Transform start, Transform end) { List results = new LinkedList(); sweepTest(shape, start, end , results); return (List<PhysicsSweepTestResult>) results; } public List<PhysicsSweepTestResult> sweepTest(CollisionShape shape, Transform start, Transform end, List<PhysicsSweepTestResult> results) { return sweepTest(shape, start, end, results, 0.0f); } public native void sweepTest_native(long shape, Transform from, Transform to, long physicsSpaceId, List<PhysicsSweepTestResult> results, float allowedCcdPenetration); /** * Performs a sweep collision test and returns the results as a list of * PhysicsSweepTestResults<br/> You have to use different Transforms for * start and end (at least distance > allowedCcdPenetration). SweepTest will not see a * collision if it starts INSIDE an object and is moving AWAY from its * center. */ public List<PhysicsSweepTestResult> sweepTest(CollisionShape shape, Transform start, Transform end, List<PhysicsSweepTestResult> results, float allowedCcdPenetration ) { results.clear(); sweepTest_native(shape.getObjectId(), start, end, physicsSpaceId, results, allowedCcdPenetration); return results; } /* private class InternalSweepListener extends CollisionWorld.ConvexResultCallback { private List<PhysicsSweepTestResult> results; public InternalSweepListener(List<PhysicsSweepTestResult> results) { this.results = results; } @Override public float addSingleResult(LocalConvexResult lcr, boolean bln) { PhysicsCollisionObject obj = (PhysicsCollisionObject) lcr.hitCollisionObject.getUserPointer(); results.add(new PhysicsSweepTestResult(obj, Converter.convert(lcr.hitNormalLocal), lcr.hitFraction, bln)); return lcr.hitFraction; } } */ /** * destroys the current PhysicsSpace so that a new one can be created */ public void destroy() { physicsBodies.clear(); physicsJoints.clear(); // dynamicsWorld.destroy(); // dynamicsWorld = null; } /** * // * used internally // * * @return the dynamicsWorld // */ public long getSpaceId() { return physicsSpaceId; } public BroadphaseType getBroadphaseType() { return broadphaseType; } public void setBroadphaseType(BroadphaseType broadphaseType) { this.broadphaseType = broadphaseType; } /** * Sets the maximum amount of extra steps that will be used to step the * physics when the fps is below the physics fps. Doing this maintains * determinism in physics. For example a maximum number of 2 can compensate * for framerates as low as 30fps when the physics has the default accuracy * of 60 fps. Note that setting this value too high can make the physics * drive down its own fps in case its overloaded. * * @param steps The maximum number of extra steps, default is 4. */ public void setMaxSubSteps(int steps) { maxSubSteps = steps; } /** * get the current accuracy of the physics computation * * @return the current accuracy */ public float getAccuracy() { return accuracy; } /** * sets the accuracy of the physics computation, default=1/60s<br> * * @param accuracy */ public void setAccuracy(float accuracy) { this.accuracy = accuracy; } public Vector3f getWorldMin() { return worldMin; } /** * only applies for AXIS_SWEEP broadphase * * @param worldMin */ public void setWorldMin(Vector3f worldMin) { this.worldMin.set(worldMin); } public Vector3f getWorldMax() { return worldMax; } /** * only applies for AXIS_SWEEP broadphase * * @param worldMax */ public void setWorldMax(Vector3f worldMax) { this.worldMax.set(worldMax); } /** * Set the number of iterations used by the contact solver. * * The default is 10. Use 4 for low quality, 20 for high quality. * * @param numIterations The number of iterations used by the contact & constraint solver. */ public void setSolverNumIterations(int numIterations) { this.solverNumIterations = numIterations; setSolverNumIterations(physicsSpaceId, numIterations); } /** * Get the number of iterations used by the contact solver. * * @return The number of iterations used by the contact & constraint solver. */ public int getSolverNumIterations() { return solverNumIterations; } private native void setSolverNumIterations(long physicsSpaceId, int numIterations); public static native void initNativePhysics(); /** * interface with Broadphase types */ public enum BroadphaseType { /** * basic Broadphase */ SIMPLE, /** * better Broadphase, needs worldBounds , max Object number = 16384 */ AXIS_SWEEP_3, /** * better Broadphase, needs worldBounds , max Object number = 65536 */ AXIS_SWEEP_3_32, /** * Broadphase allowing quicker adding/removing of physics objects */ DBVT; } @Override protected void finalize() throws Throwable { super.finalize(); Logger.getLogger(this.getClass().getName()).log(Level.FINE, "Finalizing PhysicsSpace {0}", Long.toHexString(physicsSpaceId)); finalizeNative(physicsSpaceId); } private native void finalizeNative(long objectId); }