/* * Copyright (c) 2009-2017 jMonkeyEngine * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'jMonkeyEngine' nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package com.jme3.math; import com.jme3.export.*; import java.io.IOException; import java.util.logging.Logger; /** * <code>Vector4f</code> defines a Vector for a four float value tuple. * <code>Vector4f</code> can represent any four dimensional value, such as a * vertex, a normal, etc. Utility methods are also included to aid in * mathematical calculations. * * @author Maarten Steur */ public final class Vector4f implements Savable, Cloneable, java.io.Serializable { static final long serialVersionUID = 1; private static final Logger logger = Logger.getLogger(Vector4f.class.getName()); public final static Vector4f ZERO = new Vector4f(0, 0, 0, 0); public final static Vector4f NAN = new Vector4f(Float.NaN, Float.NaN, Float.NaN, Float.NaN); public final static Vector4f UNIT_X = new Vector4f(1, 0, 0, 0); public final static Vector4f UNIT_Y = new Vector4f(0, 1, 0, 0); public final static Vector4f UNIT_Z = new Vector4f(0, 0, 1, 0); public final static Vector4f UNIT_W = new Vector4f(0, 0, 0, 1); public final static Vector4f UNIT_XYZW = new Vector4f(1, 1, 1, 1); public final static Vector4f POSITIVE_INFINITY = new Vector4f( Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY); public final static Vector4f NEGATIVE_INFINITY = new Vector4f( Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY); /** * the x value of the vector. */ public float x; /** * the y value of the vector. */ public float y; /** * the z value of the vector. */ public float z; /** * the w value of the vector. */ public float w; /** * Constructor instantiates a new <code>Vector3f</code> with default * values of (0,0,0). * */ public Vector4f() { x = y = z = w = 0; } /** * Constructor instantiates a new <code>Vector4f</code> with provides * values. * * @param x * the x value of the vector. * @param y * the y value of the vector. * @param z * the z value of the vector. * @param w * the w value of the vector. */ public Vector4f(float x, float y, float z, float w) { this.x = x; this.y = y; this.z = z; this.w = w; } /** * Constructor instantiates a new <code>Vector3f</code> that is a copy * of the provided vector * @param copy The Vector3f to copy */ public Vector4f(Vector4f copy) { this.set(copy); } /** * <code>set</code> sets the x,y,z,w values of the vector based on passed * parameters. * * @param x * the x value of the vector. * @param y * the y value of the vector. * @param z * the z value of the vector. * @param w * the w value of the vector. * @return this vector */ public Vector4f set(float x, float y, float z, float w) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } /** * <code>set</code> sets the x,y,z values of the vector by copying the * supplied vector. * * @param vect * the vector to copy. * @return this vector */ public Vector4f set(Vector4f vect) { this.x = vect.x; this.y = vect.y; this.z = vect.z; this.w = vect.w; return this; } /** * * <code>add</code> adds a provided vector to this vector creating a * resultant vector which is returned. If the provided vector is null, null * is returned. * * @param vec * the vector to add to this. * @return the resultant vector. */ public Vector4f add(Vector4f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } return new Vector4f(x + vec.x, y + vec.y, z + vec.z, w + vec.w); } /** * * <code>add</code> adds the values of a provided vector storing the * values in the supplied vector. * * @param vec * the vector to add to this * @param result * the vector to store the result in * @return result returns the supplied result vector. */ public Vector4f add(Vector4f vec, Vector4f result) { result.x = x + vec.x; result.y = y + vec.y; result.z = z + vec.z; result.w = w + vec.w; return result; } /** * <code>addLocal</code> adds a provided vector to this vector internally, * and returns a handle to this vector for easy chaining of calls. If the * provided vector is null, null is returned. * * @param vec * the vector to add to this vector. * @return this */ public Vector4f addLocal(Vector4f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } x += vec.x; y += vec.y; z += vec.z; w += vec.w; return this; } /** * * <code>add</code> adds the provided values to this vector, creating a * new vector that is then returned. * * @param addX * the x value to add. * @param addY * the y value to add. * @param addZ * the z value to add. * @return the result vector. */ public Vector4f add(float addX, float addY, float addZ, float addW) { return new Vector4f(x + addX, y + addY, z + addZ, w + addW); } /** * <code>addLocal</code> adds the provided values to this vector * internally, and returns a handle to this vector for easy chaining of * calls. * * @param addX * value to add to x * @param addY * value to add to y * @param addZ * value to add to z * @return this */ public Vector4f addLocal(float addX, float addY, float addZ, float addW) { x += addX; y += addY; z += addZ; w += addW; return this; } /** * * <code>scaleAdd</code> multiplies this vector by a scalar then adds the * given Vector3f. * * @param scalar * the value to multiply this vector by. * @param add * the value to add */ public Vector4f scaleAdd(float scalar, Vector4f add) { x = x * scalar + add.x; y = y * scalar + add.y; z = z * scalar + add.z; w = w * scalar + add.w; return this; } /** * * <code>scaleAdd</code> multiplies the given vector by a scalar then adds * the given vector. * * @param scalar * the value to multiply this vector by. * @param mult * the value to multiply the scalar by * @param add * the value to add */ public Vector4f scaleAdd(float scalar, Vector4f mult, Vector4f add) { this.x = mult.x * scalar + add.x; this.y = mult.y * scalar + add.y; this.z = mult.z * scalar + add.z; this.w = mult.w * scalar + add.w; return this; } /** * * <code>dot</code> calculates the dot product of this vector with a * provided vector. If the provided vector is null, 0 is returned. * * @param vec * the vector to dot with this vector. * @return the resultant dot product of this vector and a given vector. */ public float dot(Vector4f vec) { if (null == vec) { logger.warning("Provided vector is null, 0 returned."); return 0; } return x * vec.x + y * vec.y + z * vec.z + w * vec.w; } public Vector4f project(Vector4f other){ float n = this.dot(other); // A . B float d = other.lengthSquared(); // |B|^2 return new Vector4f(other).multLocal(n/d); } /** * Returns true if this vector is a unit vector (length() ~= 1), * returns false otherwise. * * @return true if this vector is a unit vector (length() ~= 1), * or false otherwise. */ public boolean isUnitVector(){ float len = length(); return 0.99f < len && len < 1.01f; } /** * <code>length</code> calculates the magnitude of this vector. * * @return the length or magnitude of the vector. */ public float length() { return FastMath.sqrt(lengthSquared()); } /** * <code>lengthSquared</code> calculates the squared value of the * magnitude of the vector. * * @return the magnitude squared of the vector. */ public float lengthSquared() { return x * x + y * y + z * z + w * w; } /** * <code>distanceSquared</code> calculates the distance squared between * this vector and vector v. * * @param v the second vector to determine the distance squared. * @return the distance squared between the two vectors. */ public float distanceSquared(Vector4f v) { double dx = x - v.x; double dy = y - v.y; double dz = z - v.z; double dw = w - v.w; return (float) (dx * dx + dy * dy + dz * dz + dw * dw); } /** * <code>distance</code> calculates the distance between this vector and * vector v. * * @param v the second vector to determine the distance. * @return the distance between the two vectors. */ public float distance(Vector4f v) { return FastMath.sqrt(distanceSquared(v)); } /** * * <code>mult</code> multiplies this vector by a scalar. The resultant * vector is returned. * * @param scalar * the value to multiply this vector by. * @return the new vector. */ public Vector4f mult(float scalar) { return new Vector4f(x * scalar, y * scalar, z * scalar, w * scalar); } /** * * <code>mult</code> multiplies this vector by a scalar. The resultant * vector is supplied as the second parameter and returned. * * @param scalar the scalar to multiply this vector by. * @param product the product to store the result in. * @return product */ public Vector4f mult(float scalar, Vector4f product) { if (null == product) { product = new Vector4f(); } product.x = x * scalar; product.y = y * scalar; product.z = z * scalar; product.w = w * scalar; return product; } /** * <code>multLocal</code> multiplies this vector by a scalar internally, * and returns a handle to this vector for easy chaining of calls. * * @param scalar * the value to multiply this vector by. * @return this */ public Vector4f multLocal(float scalar) { x *= scalar; y *= scalar; z *= scalar; w *= scalar; return this; } /** * <code>multLocal</code> multiplies a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec * the vector to mult to this vector. * @return this */ public Vector4f multLocal(Vector4f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } x *= vec.x; y *= vec.y; z *= vec.z; w *= vec.w; return this; } /** * <code>multLocal</code> multiplies this vector by 3 scalars * internally, and returns a handle to this vector for easy chaining of * calls. * * @param x * @param y * @param z * @param w * @return this */ public Vector4f multLocal(float x, float y, float z, float w) { this.x *= x; this.y *= y; this.z *= z; this.w *= w; return this; } /** * <code>multLocal</code> multiplies a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec * the vector to mult to this vector. * @return this */ public Vector4f mult(Vector4f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } return mult(vec, null); } /** * <code>multLocal</code> multiplies a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec * the vector to mult to this vector. * @param store result vector (null to create a new vector) * @return this */ public Vector4f mult(Vector4f vec, Vector4f store) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } if (store == null) store = new Vector4f(); return store.set(x * vec.x, y * vec.y, z * vec.z, w * vec.w); } /** * <code>divide</code> divides the values of this vector by a scalar and * returns the result. The values of this vector remain untouched. * * @param scalar * the value to divide this vectors attributes by. * @return the result <code>Vector</code>. */ public Vector4f divide(float scalar) { scalar = 1f/scalar; return new Vector4f(x * scalar, y * scalar, z * scalar, w * scalar); } /** * <code>divideLocal</code> divides this vector by a scalar internally, * and returns a handle to this vector for easy chaining of calls. Dividing * by zero will result in an exception. * * @param scalar * the value to divides this vector by. * @return this */ public Vector4f divideLocal(float scalar) { scalar = 1f/scalar; x *= scalar; y *= scalar; z *= scalar; w *= scalar; return this; } /** * <code>divide</code> divides the values of this vector by a scalar and * returns the result. The values of this vector remain untouched. * * @param scalar * the value to divide this vectors attributes by. * @return the result <code>Vector</code>. */ public Vector4f divide(Vector4f scalar) { return new Vector4f(x / scalar.x, y / scalar.y, z / scalar.z, w / scalar.w); } /** * <code>divideLocal</code> divides this vector by a scalar internally, * and returns a handle to this vector for easy chaining of calls. Dividing * by zero will result in an exception. * * @param scalar * the value to divides this vector by. * @return this */ public Vector4f divideLocal(Vector4f scalar) { x /= scalar.x; y /= scalar.y; z /= scalar.z; w /= scalar.w; return this; } /** * * <code>negate</code> returns the negative of this vector. All values are * negated and set to a new vector. * * @return the negated vector. */ public Vector4f negate() { return new Vector4f(-x, -y, -z, -w); } /** * * <code>negateLocal</code> negates the internal values of this vector. * * @return this. */ public Vector4f negateLocal() { x = -x; y = -y; z = -z; w = -w; return this; } /** * * <code>subtract</code> subtracts the values of a given vector from those * of this vector creating a new vector object. If the provided vector is * null, null is returned. * * @param vec * the vector to subtract from this vector. * @return the result vector. */ public Vector4f subtract(Vector4f vec) { return new Vector4f(x - vec.x, y - vec.y, z - vec.z, w - vec.w); } /** * <code>subtractLocal</code> subtracts a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec * the vector to subtract * @return this */ public Vector4f subtractLocal(Vector4f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } x -= vec.x; y -= vec.y; z -= vec.z; w -= vec.w; return this; } /** * * <code>subtract</code> * * @param vec * the vector to subtract from this * @param result * the vector to store the result in * @return result */ public Vector4f subtract(Vector4f vec, Vector4f result) { if(result == null) { result = new Vector4f(); } result.x = x - vec.x; result.y = y - vec.y; result.z = z - vec.z; result.w = w - vec.w; return result; } /** * * <code>subtract</code> subtracts the provided values from this vector, * creating a new vector that is then returned. * * @param subtractX * the x value to subtract. * @param subtractY * the y value to subtract. * @param subtractZ * the z value to subtract. * @param subtractW * the w value to subtract. * @return the result vector. */ public Vector4f subtract(float subtractX, float subtractY, float subtractZ, float subtractW) { return new Vector4f(x - subtractX, y - subtractY, z - subtractZ, w - subtractW); } /** * <code>subtractLocal</code> subtracts the provided values from this vector * internally, and returns a handle to this vector for easy chaining of * calls. * * @param subtractX * the x value to subtract. * @param subtractY * the y value to subtract. * @param subtractZ * the z value to subtract. * @param subtractW * the w value to subtract. * @return this */ public Vector4f subtractLocal(float subtractX, float subtractY, float subtractZ, float subtractW) { x -= subtractX; y -= subtractY; z -= subtractZ; w -= subtractW; return this; } /** * <code>normalize</code> returns the unit vector of this vector. * * @return unit vector of this vector. */ public Vector4f normalize() { // float length = length(); // if (length != 0) { // return divide(length); // } // // return divide(1); float length = x * x + y * y + z * z + w * w; if (length != 1f && length != 0f){ length = 1.0f / FastMath.sqrt(length); return new Vector4f(x * length, y * length, z * length, w * length); } return clone(); } /** * <code>normalizeLocal</code> makes this vector into a unit vector of * itself. * * @return this. */ public Vector4f normalizeLocal() { // NOTE: this implementation is more optimized // than the old jme normalize as this method // is commonly used. float length = x * x + y * y + z * z + w * w; if (length != 1f && length != 0f){ length = 1.0f / FastMath.sqrt(length); x *= length; y *= length; z *= length; w *= length; } return this; } /** * <code>maxLocal</code> computes the maximum value for each * component in this and <code>other</code> vector. The result is stored * in this vector. * @param other */ public Vector4f maxLocal(Vector4f other){ x = other.x > x ? other.x : x; y = other.y > y ? other.y : y; z = other.z > z ? other.z : z; w = other.w > w ? other.w : w; return this; } /** * <code>minLocal</code> computes the minimum value for each * component in this and <code>other</code> vector. The result is stored * in this vector. * @param other */ public Vector4f minLocal(Vector4f other){ x = other.x < x ? other.x : x; y = other.y < y ? other.y : y; z = other.z < z ? other.z : z; w = other.w < w ? other.w : w; return this; } /** * <code>zero</code> resets this vector's data to zero internally. */ public Vector4f zero() { x = y = z = w = 0; return this; } /** * <code>angleBetween</code> returns (in radians) the angle between two vectors. * It is assumed that both this vector and the given vector are unit vectors (iow, normalized). * * @param otherVector a unit vector to find the angle against * @return the angle in radians. */ public float angleBetween(Vector4f otherVector) { float dotProduct = dot(otherVector); float angle = FastMath.acos(dotProduct); return angle; } /** * Sets this vector to the interpolation by changeAmnt from this to the finalVec * this=(1-changeAmnt)*this + changeAmnt * finalVec * @param finalVec The final vector to interpolate towards * @param changeAmnt An amount between 0.0 - 1.0 representing a precentage * change from this towards finalVec */ public Vector4f interpolateLocal(Vector4f finalVec, float changeAmnt) { this.x=(1-changeAmnt)*this.x + changeAmnt*finalVec.x; this.y=(1-changeAmnt)*this.y + changeAmnt*finalVec.y; this.z=(1-changeAmnt)*this.z + changeAmnt*finalVec.z; this.w=(1-changeAmnt)*this.w + changeAmnt*finalVec.w; return this; } /** * Sets this vector to the interpolation by changeAmnt from beginVec to finalVec * this=(1-changeAmnt)*beginVec + changeAmnt * finalVec * @param beginVec the beging vector (changeAmnt=0) * @param finalVec The final vector to interpolate towards * @param changeAmnt An amount between 0.0 - 1.0 representing a precentage * change from beginVec towards finalVec */ public Vector4f interpolateLocal(Vector4f beginVec,Vector4f finalVec, float changeAmnt) { this.x=(1-changeAmnt)*beginVec.x + changeAmnt*finalVec.x; this.y=(1-changeAmnt)*beginVec.y + changeAmnt*finalVec.y; this.z=(1-changeAmnt)*beginVec.z + changeAmnt*finalVec.z; this.w=(1-changeAmnt)*beginVec.w + changeAmnt*finalVec.w; return this; } /** * Check a vector... if it is null or its floats are NaN or infinite, * return false. Else return true. * @param vector the vector to check * @return true or false as stated above. */ public static boolean isValidVector(Vector4f vector) { if (vector == null) return false; if (Float.isNaN(vector.x) || Float.isNaN(vector.y) || Float.isNaN(vector.z)|| Float.isNaN(vector.w)) return false; if (Float.isInfinite(vector.x) || Float.isInfinite(vector.y) || Float.isInfinite(vector.z) || Float.isInfinite(vector.w)) return false; return true; } @Override public Vector4f clone() { try { return (Vector4f) super.clone(); } catch (CloneNotSupportedException e) { throw new AssertionError(); // can not happen } } /** * Saves this Vector3f into the given float[] object. * * @param floats * The float[] to take this Vector3f. If null, a new float[3] is * created. * @return The array, with X, Y, Z float values in that order */ public float[] toArray(float[] floats) { if (floats == null) { floats = new float[4]; } floats[0] = x; floats[1] = y; floats[2] = z; floats[3] = w; return floats; } /** * are these two vectors the same? they are is they both have the same x,y, * and z values. * * @param o * the object to compare for equality * @return true if they are equal */ public boolean equals(Object o) { if (!(o instanceof Vector4f)) { return false; } if (this == o) { return true; } Vector4f comp = (Vector4f) o; if (Float.compare(x,comp.x) != 0) return false; if (Float.compare(y,comp.y) != 0) return false; if (Float.compare(z,comp.z) != 0) return false; if (Float.compare(w,comp.w) != 0) return false; return true; } /** * <code>hashCode</code> returns a unique code for this vector object based * on it's values. If two vectors are logically equivalent, they will return * the same hash code value. * @return the hash code value of this vector. */ public int hashCode() { int hash = 37; hash += 37 * hash + Float.floatToIntBits(x); hash += 37 * hash + Float.floatToIntBits(y); hash += 37 * hash + Float.floatToIntBits(z); hash += 37 * hash + Float.floatToIntBits(w); return hash; } /** * <code>toString</code> returns the string representation of this vector. * The format is: * * org.jme.math.Vector3f [X=XX.XXXX, Y=YY.YYYY, Z=ZZ.ZZZZ, W=WW.WWWW] * * @return the string representation of this vector. */ public String toString() { return "(" + x + ", " + y + ", " + z + ", " + w + ")"; } public void write(JmeExporter e) throws IOException { OutputCapsule capsule = e.getCapsule(this); capsule.write(x, "x", 0); capsule.write(y, "y", 0); capsule.write(z, "z", 0); capsule.write(w, "w", 0); } public void read(JmeImporter e) throws IOException { InputCapsule capsule = e.getCapsule(this); x = capsule.readFloat("x", 0); y = capsule.readFloat("y", 0); z = capsule.readFloat("z", 0); w = capsule.readFloat("w", 0); } public float getX() { return x; } public Vector4f setX(float x) { this.x = x; return this; } public float getY() { return y; } public Vector4f setY(float y) { this.y = y; return this; } public float getZ() { return z; } public Vector4f setZ(float z) { this.z = z; return this; } public float getW() { return w; } public Vector4f setW(float w) { this.w = w; return this; } /** * @param index * @return x value if index == 0, y value if index == 1 or z value if index == * 2 * @throws IllegalArgumentException * if index is not one of 0, 1, 2. */ public float get(int index) { switch (index) { case 0: return x; case 1: return y; case 2: return z; case 3: return w; } throw new IllegalArgumentException("index must be either 0, 1, 2 or 3"); } /** * @param index * which field index in this vector to set. * @param value * to set to one of x, y, z or w. * @throws IllegalArgumentException * if index is not one of 0, 1, 2, 3. */ public void set(int index, float value) { switch (index) { case 0: x = value; return; case 1: y = value; return; case 2: z = value; return; case 3: w = value; return; } throw new IllegalArgumentException("index must be either 0, 1, 2 or 3"); } }