/* * Copyright (c) 2009-2017 jMonkeyEngine * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'jMonkeyEngine' nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package com.jme3.math; import com.jme3.export.*; import java.io.IOException; import java.util.logging.Logger; /* * -- Added *Local methods to cut down on object creation - JS */ /** * <code>Vector3f</code> defines a Vector for a three float value tuple. * <code>Vector3f</code> can represent any three dimensional value, such as a * vertex, a normal, etc. Utility methods are also included to aid in * mathematical calculations. * * @author Mark Powell * @author Joshua Slack */ public final class Vector3f implements Savable, Cloneable, java.io.Serializable { static final long serialVersionUID = 1; private static final Logger logger = Logger.getLogger(Vector3f.class.getName()); public final static Vector3f ZERO = new Vector3f(0, 0, 0); public final static Vector3f NAN = new Vector3f(Float.NaN, Float.NaN, Float.NaN); public final static Vector3f UNIT_X = new Vector3f(1, 0, 0); public final static Vector3f UNIT_Y = new Vector3f(0, 1, 0); public final static Vector3f UNIT_Z = new Vector3f(0, 0, 1); public final static Vector3f UNIT_XYZ = new Vector3f(1, 1, 1); public final static Vector3f POSITIVE_INFINITY = new Vector3f( Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY); public final static Vector3f NEGATIVE_INFINITY = new Vector3f( Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY); /** * the x value of the vector. */ public float x; /** * the y value of the vector. */ public float y; /** * the z value of the vector. */ public float z; /** * Constructor instantiates a new <code>Vector3f</code> with default * values of (0,0,0). * */ public Vector3f() { x = y = z = 0; } /** * Constructor instantiates a new <code>Vector3f</code> with provides * values. * * @param x * the x value of the vector. * @param y * the y value of the vector. * @param z * the z value of the vector. */ public Vector3f(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } /** * Constructor instantiates a new <code>Vector3f</code> that is a copy * of the provided vector * @param copy The Vector3f to copy */ public Vector3f(Vector3f copy) { this.set(copy); } /** * <code>set</code> sets the x,y,z values of the vector based on passed * parameters. * * @param x * the x value of the vector. * @param y * the y value of the vector. * @param z * the z value of the vector. * @return this vector */ public Vector3f set(float x, float y, float z) { this.x = x; this.y = y; this.z = z; return this; } /** * <code>set</code> sets the x,y,z values of the vector by copying the * supplied vector. * * @param vect * the vector to copy. * @return this vector */ public Vector3f set(Vector3f vect) { this.x = vect.x; this.y = vect.y; this.z = vect.z; return this; } /** * * <code>add</code> adds a provided vector to this vector creating a * resultant vector which is returned. If the provided vector is null, null * is returned. * * @param vec * the vector to add to this. * @return the resultant vector. */ public Vector3f add(Vector3f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } return new Vector3f(x + vec.x, y + vec.y, z + vec.z); } /** * * <code>add</code> adds the values of a provided vector storing the * values in the supplied vector. * * @param vec * the vector to add to this * @param result * the vector to store the result in * @return result returns the supplied result vector. */ public Vector3f add(Vector3f vec, Vector3f result) { result.x = x + vec.x; result.y = y + vec.y; result.z = z + vec.z; return result; } /** * <code>addLocal</code> adds a provided vector to this vector internally, * and returns a handle to this vector for easy chaining of calls. If the * provided vector is null, null is returned. * * @param vec * the vector to add to this vector. * @return this */ public Vector3f addLocal(Vector3f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } x += vec.x; y += vec.y; z += vec.z; return this; } /** * * <code>add</code> adds the provided values to this vector, creating a * new vector that is then returned. * * @param addX * the x value to add. * @param addY * the y value to add. * @param addZ * the z value to add. * @return the result vector. */ public Vector3f add(float addX, float addY, float addZ) { return new Vector3f(x + addX, y + addY, z + addZ); } /** * <code>addLocal</code> adds the provided values to this vector * internally, and returns a handle to this vector for easy chaining of * calls. * * @param addX * value to add to x * @param addY * value to add to y * @param addZ * value to add to z * @return this */ public Vector3f addLocal(float addX, float addY, float addZ) { x += addX; y += addY; z += addZ; return this; } /** * * <code>scaleAdd</code> multiplies this vector by a scalar then adds the * given Vector3f. * * @param scalar * the value to multiply this vector by. * @param add * the value to add */ public Vector3f scaleAdd(float scalar, Vector3f add) { x = x * scalar + add.x; y = y * scalar + add.y; z = z * scalar + add.z; return this; } /** * * <code>scaleAdd</code> multiplies the given vector by a scalar then adds * the given vector. * * @param scalar * the value to multiply this vector by. * @param mult * the value to multiply the scalar by * @param add * the value to add */ public Vector3f scaleAdd(float scalar, Vector3f mult, Vector3f add) { this.x = mult.x * scalar + add.x; this.y = mult.y * scalar + add.y; this.z = mult.z * scalar + add.z; return this; } /** * * <code>dot</code> calculates the dot product of this vector with a * provided vector. If the provided vector is null, 0 is returned. * * @param vec * the vector to dot with this vector. * @return the resultant dot product of this vector and a given vector. */ public float dot(Vector3f vec) { if (null == vec) { logger.warning("Provided vector is null, 0 returned."); return 0; } return x * vec.x + y * vec.y + z * vec.z; } /** * <code>cross</code> calculates the cross product of this vector with a * parameter vector v. * * @param v * the vector to take the cross product of with this. * @return the cross product vector. */ public Vector3f cross(Vector3f v) { return cross(v, null); } /** * <code>cross</code> calculates the cross product of this vector with a * parameter vector v. The result is stored in <code>result</code> * * @param v * the vector to take the cross product of with this. * @param result * the vector to store the cross product result. * @return result, after recieving the cross product vector. */ public Vector3f cross(Vector3f v,Vector3f result) { return cross(v.x, v.y, v.z, result); } /** * <code>cross</code> calculates the cross product of this vector with a * parameter vector v. The result is stored in <code>result</code> * * @param otherX * x component of the vector to take the cross product of with this. * @param otherY * y component of the vector to take the cross product of with this. * @param otherZ * z component of the vector to take the cross product of with this. * @param result * the vector to store the cross product result. * @return result, after recieving the cross product vector. */ public Vector3f cross(float otherX, float otherY, float otherZ, Vector3f result) { if (result == null) result = new Vector3f(); float resX = ((y * otherZ) - (z * otherY)); float resY = ((z * otherX) - (x * otherZ)); float resZ = ((x * otherY) - (y * otherX)); result.set(resX, resY, resZ); return result; } /** * <code>crossLocal</code> calculates the cross product of this vector * with a parameter vector v. * * @param v * the vector to take the cross product of with this. * @return this. */ public Vector3f crossLocal(Vector3f v) { return crossLocal(v.x, v.y, v.z); } /** * <code>crossLocal</code> calculates the cross product of this vector * with a parameter vector v. * * @param otherX * x component of the vector to take the cross product of with this. * @param otherY * y component of the vector to take the cross product of with this. * @param otherZ * z component of the vector to take the cross product of with this. * @return this. */ public Vector3f crossLocal(float otherX, float otherY, float otherZ) { float tempx = ( y * otherZ ) - ( z * otherY ); float tempy = ( z * otherX ) - ( x * otherZ ); z = (x * otherY) - (y * otherX); x = tempx; y = tempy; return this; } /** * Projects this vector onto another vector * * @param other The vector to project this vector onto * @return A new vector with the projection result */ public Vector3f project(Vector3f other){ float n = this.dot(other); // A . B float d = other.lengthSquared(); // |B|^2 return new Vector3f(other).multLocal(n/d); } /** * Projects this vector onto another vector, stores the result in this * vector * * @param other The vector to project this vector onto * @return This Vector3f, set to the projection result */ public Vector3f projectLocal(Vector3f other){ float n = this.dot(other); // A . B float d = other.lengthSquared(); // |B|^2 return set(other).multLocal(n/d); } /** * Returns true if this vector is a unit vector (length() ~= 1), * returns false otherwise. * * @return true if this vector is a unit vector (length() ~= 1), * or false otherwise. */ public boolean isUnitVector(){ float len = length(); return 0.99f < len && len < 1.01f; } /** * <code>length</code> calculates the magnitude of this vector. * * @return the length or magnitude of the vector. */ public float length() { return FastMath.sqrt(lengthSquared()); } /** * <code>lengthSquared</code> calculates the squared value of the * magnitude of the vector. * * @return the magnitude squared of the vector. */ public float lengthSquared() { return x * x + y * y + z * z; } /** * <code>distanceSquared</code> calculates the distance squared between * this vector and vector v. * * @param v the second vector to determine the distance squared. * @return the distance squared between the two vectors. */ public float distanceSquared(Vector3f v) { double dx = x - v.x; double dy = y - v.y; double dz = z - v.z; return (float) (dx * dx + dy * dy + dz * dz); } /** * <code>distance</code> calculates the distance between this vector and * vector v. * * @param v the second vector to determine the distance. * @return the distance between the two vectors. */ public float distance(Vector3f v) { return FastMath.sqrt(distanceSquared(v)); } /** * * <code>mult</code> multiplies this vector by a scalar. The resultant * vector is returned. * * @param scalar * the value to multiply this vector by. * @return the new vector. */ public Vector3f mult(float scalar) { return new Vector3f(x * scalar, y * scalar, z * scalar); } /** * * <code>mult</code> multiplies this vector by a scalar. The resultant * vector is supplied as the second parameter and returned. * * @param scalar the scalar to multiply this vector by. * @param product the product to store the result in. * @return product */ public Vector3f mult(float scalar, Vector3f product) { if (null == product) { product = new Vector3f(); } product.x = x * scalar; product.y = y * scalar; product.z = z * scalar; return product; } /** * <code>multLocal</code> multiplies this vector by a scalar internally, * and returns a handle to this vector for easy chaining of calls. * * @param scalar * the value to multiply this vector by. * @return this */ public Vector3f multLocal(float scalar) { x *= scalar; y *= scalar; z *= scalar; return this; } /** * <code>multLocal</code> multiplies a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec * the vector to mult to this vector. * @return this */ public Vector3f multLocal(Vector3f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } x *= vec.x; y *= vec.y; z *= vec.z; return this; } /** * <code>multLocal</code> multiplies this vector by 3 scalars * internally, and returns a handle to this vector for easy chaining of * calls. * * @param x * @param y * @param z * @return this */ public Vector3f multLocal(float x, float y, float z) { this.x *= x; this.y *= y; this.z *= z; return this; } /** * <code>multLocal</code> multiplies a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec * the vector to mult to this vector. * @return this */ public Vector3f mult(Vector3f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } return mult(vec, null); } /** * <code>multLocal</code> multiplies a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec * the vector to mult to this vector. * @param store result vector (null to create a new vector) * @return this */ public Vector3f mult(Vector3f vec, Vector3f store) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } if (store == null) store = new Vector3f(); return store.set(x * vec.x, y * vec.y, z * vec.z); } /** * <code>divide</code> divides the values of this vector by a scalar and * returns the result. The values of this vector remain untouched. * * @param scalar * the value to divide this vectors attributes by. * @return the result <code>Vector</code>. */ public Vector3f divide(float scalar) { scalar = 1f/scalar; return new Vector3f(x * scalar, y * scalar, z * scalar); } /** * <code>divideLocal</code> divides this vector by a scalar internally, * and returns a handle to this vector for easy chaining of calls. Dividing * by zero will result in an exception. * * @param scalar * the value to divides this vector by. * @return this */ public Vector3f divideLocal(float scalar) { scalar = 1f/scalar; x *= scalar; y *= scalar; z *= scalar; return this; } /** * <code>divide</code> divides the values of this vector by a scalar and * returns the result. The values of this vector remain untouched. * * @param scalar * the value to divide this vectors attributes by. * @return the result <code>Vector</code>. */ public Vector3f divide(Vector3f scalar) { return new Vector3f(x / scalar.x, y / scalar.y, z / scalar.z); } /** * <code>divideLocal</code> divides this vector by a scalar internally, * and returns a handle to this vector for easy chaining of calls. Dividing * by zero will result in an exception. * * @param scalar * the value to divides this vector by. * @return this */ public Vector3f divideLocal(Vector3f scalar) { x /= scalar.x; y /= scalar.y; z /= scalar.z; return this; } /** * * <code>negate</code> returns the negative of this vector. All values are * negated and set to a new vector. * * @return the negated vector. */ public Vector3f negate() { return new Vector3f(-x, -y, -z); } /** * * <code>negateLocal</code> negates the internal values of this vector. * * @return this. */ public Vector3f negateLocal() { x = -x; y = -y; z = -z; return this; } /** * * <code>subtract</code> subtracts the values of a given vector from those * of this vector creating a new vector object. If the provided vector is * null, null is returned. * * @param vec * the vector to subtract from this vector. * @return the result vector. */ public Vector3f subtract(Vector3f vec) { return new Vector3f(x - vec.x, y - vec.y, z - vec.z); } /** * <code>subtractLocal</code> subtracts a provided vector to this vector * internally, and returns a handle to this vector for easy chaining of * calls. If the provided vector is null, null is returned. * * @param vec * the vector to subtract * @return this */ public Vector3f subtractLocal(Vector3f vec) { if (null == vec) { logger.warning("Provided vector is null, null returned."); return null; } x -= vec.x; y -= vec.y; z -= vec.z; return this; } /** * * <code>subtract</code> * * @param vec * the vector to subtract from this * @param result * the vector to store the result in * @return result */ public Vector3f subtract(Vector3f vec, Vector3f result) { if(result == null) { result = new Vector3f(); } result.x = x - vec.x; result.y = y - vec.y; result.z = z - vec.z; return result; } /** * * <code>subtract</code> subtracts the provided values from this vector, * creating a new vector that is then returned. * * @param subtractX * the x value to subtract. * @param subtractY * the y value to subtract. * @param subtractZ * the z value to subtract. * @return the result vector. */ public Vector3f subtract(float subtractX, float subtractY, float subtractZ) { return new Vector3f(x - subtractX, y - subtractY, z - subtractZ); } /** * <code>subtractLocal</code> subtracts the provided values from this vector * internally, and returns a handle to this vector for easy chaining of * calls. * * @param subtractX * the x value to subtract. * @param subtractY * the y value to subtract. * @param subtractZ * the z value to subtract. * @return this */ public Vector3f subtractLocal(float subtractX, float subtractY, float subtractZ) { x -= subtractX; y -= subtractY; z -= subtractZ; return this; } /** * <code>normalize</code> returns the unit vector of this vector. * * @return unit vector of this vector. */ public Vector3f normalize() { // float length = length(); // if (length != 0) { // return divide(length); // } // // return divide(1); float length = x * x + y * y + z * z; if (length != 1f && length != 0f){ length = 1.0f / FastMath.sqrt(length); return new Vector3f(x * length, y * length, z * length); } return clone(); } /** * <code>normalizeLocal</code> makes this vector into a unit vector of * itself. * * @return this. */ public Vector3f normalizeLocal() { // NOTE: this implementation is more optimized // than the old jme normalize as this method // is commonly used. float length = x * x + y * y + z * z; if (length != 1f && length != 0f){ length = 1.0f / FastMath.sqrt(length); x *= length; y *= length; z *= length; } return this; } /** * <code>maxLocal</code> computes the maximum value for each * component in this and <code>other</code> vector. The result is stored * in this vector. * @param other */ public Vector3f maxLocal(Vector3f other){ x = other.x > x ? other.x : x; y = other.y > y ? other.y : y; z = other.z > z ? other.z : z; return this; } /** * <code>minLocal</code> computes the minimum value for each * component in this and <code>other</code> vector. The result is stored * in this vector. * @param other */ public Vector3f minLocal(Vector3f other){ x = other.x < x ? other.x : x; y = other.y < y ? other.y : y; z = other.z < z ? other.z : z; return this; } /** * <code>zero</code> resets this vector's data to zero internally. */ public Vector3f zero() { x = y = z = 0; return this; } /** * <code>angleBetween</code> returns (in radians) the angle between two vectors. * It is assumed that both this vector and the given vector are unit vectors (iow, normalized). * * @param otherVector a unit vector to find the angle against * @return the angle in radians. */ public float angleBetween(Vector3f otherVector) { float dotProduct = dot(otherVector); float angle = FastMath.acos(dotProduct); return angle; } /** * Sets this vector to the interpolation by changeAmnt from this to the finalVec * this=(1-changeAmnt)*this + changeAmnt * finalVec * @param finalVec The final vector to interpolate towards * @param changeAmnt An amount between 0.0 - 1.0 representing a precentage * change from this towards finalVec */ public Vector3f interpolateLocal(Vector3f finalVec, float changeAmnt) { this.x=(1-changeAmnt)*this.x + changeAmnt*finalVec.x; this.y=(1-changeAmnt)*this.y + changeAmnt*finalVec.y; this.z=(1-changeAmnt)*this.z + changeAmnt*finalVec.z; return this; } /** * Sets this vector to the interpolation by changeAmnt from beginVec to finalVec * this=(1-changeAmnt)*beginVec + changeAmnt * finalVec * @param beginVec the beging vector (changeAmnt=0) * @param finalVec The final vector to interpolate towards * @param changeAmnt An amount between 0.0 - 1.0 representing a precentage * change from beginVec towards finalVec */ public Vector3f interpolateLocal(Vector3f beginVec,Vector3f finalVec, float changeAmnt) { this.x=(1-changeAmnt)*beginVec.x + changeAmnt*finalVec.x; this.y=(1-changeAmnt)*beginVec.y + changeAmnt*finalVec.y; this.z=(1-changeAmnt)*beginVec.z + changeAmnt*finalVec.z; return this; } /** * Check a vector... if it is null or its floats are NaN or infinite, * return false. Else return true. * @param vector the vector to check * @return true or false as stated above. */ public static boolean isValidVector(Vector3f vector) { if (vector == null) return false; if (Float.isNaN(vector.x) || Float.isNaN(vector.y) || Float.isNaN(vector.z)) return false; if (Float.isInfinite(vector.x) || Float.isInfinite(vector.y) || Float.isInfinite(vector.z)) return false; return true; } public static void generateOrthonormalBasis(Vector3f u, Vector3f v, Vector3f w) { w.normalizeLocal(); generateComplementBasis(u, v, w); } public static void generateComplementBasis(Vector3f u, Vector3f v, Vector3f w) { float fInvLength; if (FastMath.abs(w.x) >= FastMath.abs(w.y)) { // w.x or w.z is the largest magnitude component, swap them fInvLength = FastMath.invSqrt(w.x * w.x + w.z * w.z); u.x = -w.z * fInvLength; u.y = 0.0f; u.z = +w.x * fInvLength; v.x = w.y * u.z; v.y = w.z * u.x - w.x * u.z; v.z = -w.y * u.x; } else { // w.y or w.z is the largest magnitude component, swap them fInvLength = FastMath.invSqrt(w.y * w.y + w.z * w.z); u.x = 0.0f; u.y = +w.z * fInvLength; u.z = -w.y * fInvLength; v.x = w.y * u.z - w.z * u.y; v.y = -w.x * u.z; v.z = w.x * u.y; } } @Override public Vector3f clone() { try { return (Vector3f) super.clone(); } catch (CloneNotSupportedException e) { throw new AssertionError(); // can not happen } } /** * Saves this Vector3f into the given float[] object. * * @param floats * The float[] to take this Vector3f. If null, a new float[3] is * created. * @return The array, with X, Y, Z float values in that order */ public float[] toArray(float[] floats) { if (floats == null) { floats = new float[3]; } floats[0] = x; floats[1] = y; floats[2] = z; return floats; } /** * are these two vectors the same? they are is they both have the same x,y, * and z values. * * @param o * the object to compare for equality * @return true if they are equal */ public boolean equals(Object o) { if (!(o instanceof Vector3f)) { return false; } if (this == o) { return true; } Vector3f comp = (Vector3f) o; if (Float.compare(x,comp.x) != 0) return false; if (Float.compare(y,comp.y) != 0) return false; if (Float.compare(z,comp.z) != 0) return false; return true; } /** * <code>hashCode</code> returns a unique code for this vector object based * on it's values. If two vectors are logically equivalent, they will return * the same hash code value. * @return the hash code value of this vector. */ public int hashCode() { int hash = 37; hash += 37 * hash + Float.floatToIntBits(x); hash += 37 * hash + Float.floatToIntBits(y); hash += 37 * hash + Float.floatToIntBits(z); return hash; } /** * <code>toString</code> returns the string representation of this vector. * The format is: * * org.jme.math.Vector3f [X=XX.XXXX, Y=YY.YYYY, Z=ZZ.ZZZZ] * * @return the string representation of this vector. */ public String toString() { return "(" + x + ", " + y + ", " + z + ")"; } public void write(JmeExporter e) throws IOException { OutputCapsule capsule = e.getCapsule(this); capsule.write(x, "x", 0); capsule.write(y, "y", 0); capsule.write(z, "z", 0); } public void read(JmeImporter e) throws IOException { InputCapsule capsule = e.getCapsule(this); x = capsule.readFloat("x", 0); y = capsule.readFloat("y", 0); z = capsule.readFloat("z", 0); } public float getX() { return x; } public Vector3f setX(float x) { this.x = x; return this; } public float getY() { return y; } public Vector3f setY(float y) { this.y = y; return this; } public float getZ() { return z; } public Vector3f setZ(float z) { this.z = z; return this; } /** * @param index * @return x value if index == 0, y value if index == 1 or z value if index == * 2 * @throws IllegalArgumentException * if index is not one of 0, 1, 2. */ public float get(int index) { switch (index) { case 0: return x; case 1: return y; case 2: return z; } throw new IllegalArgumentException("index must be either 0, 1 or 2"); } /** * @param index * which field index in this vector to set. * @param value * to set to one of x, y or z. * @throws IllegalArgumentException * if index is not one of 0, 1, 2. */ public void set(int index, float value) { switch (index) { case 0: x = value; return; case 1: y = value; return; case 2: z = value; return; } throw new IllegalArgumentException("index must be either 0, 1 or 2"); } }