/* * Copyright (c) 2009-2012, 2015-2016 jMonkeyEngine * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of 'jMonkeyEngine' nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package com.jme3.light; import com.jme3.bounding.BoundingBox; import com.jme3.bounding.BoundingSphere; import com.jme3.bounding.BoundingVolume; import com.jme3.bounding.Intersection; import com.jme3.export.*; import com.jme3.math.ColorRGBA; import com.jme3.math.FastMath; import com.jme3.math.Plane; import com.jme3.math.Vector3f; import com.jme3.renderer.Camera; import com.jme3.scene.Spatial; import com.jme3.util.TempVars; import java.io.IOException; /** * Represents a spot light. * A spot light emits a cone of light from a position and in a direction. * It can be used to fake torch lights or car's lights. * <p> * In addition to a position and a direction, spot lights also have a range which * can be used to attenuate the influence of the light depending on the * distance between the light and the affected object. * Also the angle of the cone can be tweaked by changing the spot inner angle and the spot outer angle. * the spot inner angle determines the cone of light where light has full influence. * the spot outer angle determines the cone global cone of light of the spot light. * the light intensity slowly decreases between the inner cone and the outer cone. * @author Nehon */ public class SpotLight extends Light { protected Vector3f position = new Vector3f(); protected Vector3f direction = new Vector3f(0, -1, 0); protected float spotInnerAngle = FastMath.QUARTER_PI / 8; protected float spotOuterAngle = FastMath.QUARTER_PI / 6; protected float spotRange = 100; protected float invSpotRange = 1f / 100; protected float packedAngleCos = 0; protected float outerAngleCosSqr, outerAngleSinSqr; protected float outerAngleSinRcp, outerAngleSin, outerAngleCos; /** * Creates a SpotLight. */ public SpotLight() { super(); computeAngleParameters(); } /** * Creates a SpotLight at the given position and with the given direction. * @param position the position in world space. * @param direction the direction of the light. */ public SpotLight(Vector3f position, Vector3f direction) { this(); setPosition(position); setDirection(direction); } /** * Creates a SpotLight at the given position, with the given direction, and the * given range. * @param position the position in world space. * @param direction the direction of the light. * @param range the spot light range */ public SpotLight(Vector3f position, Vector3f direction, float range) { this(); setPosition(position); setDirection(direction); setSpotRange(range); } /** * Creates a SpotLight at the given position, with the given direction and * the given color. * @param position the position in world space. * @param direction the direction of the light. * @param color the light's color. */ public SpotLight(Vector3f position, Vector3f direction, ColorRGBA color) { super(color); computeAngleParameters(); setPosition(position); setDirection(direction); } /** * Creates a SpotLight at the given position, with the given direction, * the given range and the given color. * @param position the position in world space. * @param direction the direction of the light. * @param range the spot light range * @param color the light's color. */ public SpotLight(Vector3f position, Vector3f direction, float range, ColorRGBA color) { super(color); computeAngleParameters(); setPosition(position); setDirection(direction); setSpotRange(range); } /** * Creates a SpotLight at the given position, with the given direction, * the given color and the given inner and outer angles * (controls the falloff of the light) * * @param position the position in world space. * @param direction the direction of the light. * @param range the spot light range * @param color the light's color. * @param innerAngle the inner angle of the spot light. * @param outerAngle the outer angle of the spot light. * * @see SpotLight#setSpotInnerAngle(float) * @see SpotLight#setSpotOuterAngle(float) */ public SpotLight(Vector3f position, Vector3f direction, float range, ColorRGBA color, float innerAngle, float outerAngle) { super(color); this.spotInnerAngle = innerAngle; this.spotOuterAngle = outerAngle; computeAngleParameters(); setPosition(position); setDirection(direction); setSpotRange(range); } private void computeAngleParameters() { float innerCos = FastMath.cos(spotInnerAngle); outerAngleCos = FastMath.cos(spotOuterAngle); packedAngleCos = (int) (innerCos * 1000); //due to approximations, very close angles can give the same cos //here we make sure outer cos is bellow inner cos. if (((int) packedAngleCos) == ((int) (outerAngleCos * 1000))) { outerAngleCos -= 0.001f; } packedAngleCos += outerAngleCos; if (packedAngleCos == 0.0f) { throw new IllegalArgumentException("Packed angle cosine is invalid"); } // compute parameters needed for cone vs sphere check. outerAngleSin = FastMath.sin(spotOuterAngle); outerAngleCosSqr = outerAngleCos * outerAngleCos; outerAngleSinSqr = outerAngleSin * outerAngleSin; outerAngleSinRcp = 1.0f / outerAngleSin; } @Override public boolean intersectsBox(BoundingBox box, TempVars vars) { if (this.spotRange > 0f) { // Check spot range first. // Sphere v. box collision if (!Intersection.intersect(box, position, spotRange)) { return false; } } Vector3f otherCenter = box.getCenter(); Vector3f radVect = vars.vect4; radVect.set(box.getXExtent(), box.getYExtent(), box.getZExtent()); float otherRadiusSquared = radVect.lengthSquared(); float otherRadius = FastMath.sqrt(otherRadiusSquared); // Check if sphere is within spot angle. // Cone v. sphere collision. Vector3f E = direction.mult(otherRadius * outerAngleSinRcp, vars.vect1); Vector3f U = position.subtract(E, vars.vect2); Vector3f D = otherCenter.subtract(U, vars.vect3); float dsqr = D.dot(D); float e = direction.dot(D); if (e > 0f && e * e >= dsqr * outerAngleCosSqr) { D = otherCenter.subtract(position, vars.vect3); dsqr = D.dot(D); e = -direction.dot(D); if (e > 0f && e * e >= dsqr * outerAngleSinSqr) { return dsqr <= otherRadiusSquared; } else { return true; } } return false; } @Override public boolean intersectsSphere(BoundingSphere sphere, TempVars vars) { if (this.spotRange > 0f) { // Check spot range first. // Sphere v. sphere collision if (!Intersection.intersect(sphere, position, spotRange)) { return false; } } float otherRadiusSquared = FastMath.sqr(sphere.getRadius()); float otherRadius = sphere.getRadius(); // Check if sphere is within spot angle. // Cone v. sphere collision. Vector3f E = direction.mult(otherRadius * outerAngleSinRcp, vars.vect1); Vector3f U = position.subtract(E, vars.vect2); Vector3f D = sphere.getCenter().subtract(U, vars.vect3); float dsqr = D.dot(D); float e = direction.dot(D); if (e > 0f && e * e >= dsqr * outerAngleCosSqr) { D = sphere.getCenter().subtract(position, vars.vect3); dsqr = D.dot(D); e = -direction.dot(D); if (e > 0f && e * e >= dsqr * outerAngleSinSqr) { return dsqr <= otherRadiusSquared; } else { return true; } } return false; } @Override public boolean intersectsFrustum(Camera cam, TempVars vars) { if (spotRange == 0) { // The algorithm below does not support infinite spot range. return true; } Vector3f farPoint = vars.vect1.set(position).addLocal(vars.vect2.set(direction).multLocal(spotRange)); for (int i = 5; i >= 0; i--) { //check origin against the plane Plane plane = cam.getWorldPlane(i); float dot = plane.pseudoDistance(position); if(dot < 0){ // outside, check the far point against the plane dot = plane.pseudoDistance(farPoint); if(dot < 0){ // outside, check the projection of the far point along the normal of the plane to the base disc perimeter of the cone //computing the radius of the base disc float farRadius = (spotRange / outerAngleCos) * outerAngleSin; //computing the projection direction : perpendicular to the light direction and coplanar with the direction vector and the normal vector Vector3f perpDirection = vars.vect2.set(direction).crossLocal(plane.getNormal()).normalizeLocal().crossLocal(direction); //projecting the far point on the base disc perimeter Vector3f projectedPoint = vars.vect3.set(farPoint).addLocal(perpDirection.multLocal(farRadius)); //checking against the plane dot = plane.pseudoDistance(projectedPoint); if(dot < 0){ // Outside, the light can be culled return false; } } } } return true; } @Override protected void computeLastDistance(Spatial owner) { if (owner.getWorldBound() != null) { BoundingVolume bv = owner.getWorldBound(); lastDistance = bv.distanceSquaredTo(position); } else { lastDistance = owner.getWorldTranslation().distanceSquared(position); } } @Override public Type getType() { return Type.Spot; } public Vector3f getDirection() { return direction; } public final void setDirection(Vector3f direction) { this.direction.set(direction); } public Vector3f getPosition() { return position; } public final void setPosition(Vector3f position) { this.position.set(position); } public float getSpotRange() { return spotRange; } /** * Set the range of the light influence. * <p> * Setting a non-zero range indicates the light should use attenuation. * If a pixel's distance to this light's position * is greater than the light's range, then the pixel will not be * effected by this light, if the distance is less than the range, then * the magnitude of the influence is equal to distance / range. * * @param spotRange the range of the light influence. * * @throws IllegalArgumentException If spotRange is negative */ public void setSpotRange(float spotRange) { if (spotRange < 0) { throw new IllegalArgumentException("SpotLight range cannot be negative"); } this.spotRange = spotRange; if (spotRange != 0f) { this.invSpotRange = 1f / spotRange; } else { this.invSpotRange = 0; } } /** * for internal use only * @return the inverse of the spot range */ public float getInvSpotRange() { return invSpotRange; } /** * returns the spot inner angle * @return the spot inner angle */ public float getSpotInnerAngle() { return spotInnerAngle; } /** * Sets the inner angle of the cone of influence. * <p> * Must be between 0 and pi/2. * <p> * This angle is the angle between the spot direction axis and the inner border of the cone of influence. * @param spotInnerAngle */ public void setSpotInnerAngle(float spotInnerAngle) { if (spotInnerAngle < 0f || spotInnerAngle >= FastMath.HALF_PI) { throw new IllegalArgumentException("spot angle must be between 0 and pi/2"); } this.spotInnerAngle = spotInnerAngle; computeAngleParameters(); } /** * returns the spot outer angle * @return the spot outer angle */ public float getSpotOuterAngle() { return spotOuterAngle; } /** * Sets the outer angle of the cone of influence. * <p> * Must be between 0 and pi/2. * <p> * This angle is the angle between the spot direction axis and the outer border of the cone of influence. * this should be greater than the inner angle or the result will be unexpected. * @param spotOuterAngle */ public void setSpotOuterAngle(float spotOuterAngle) { if (spotOuterAngle < 0f || spotOuterAngle >= FastMath.HALF_PI) { throw new IllegalArgumentException("spot angle must be between 0 and pi/2"); } this.spotOuterAngle = spotOuterAngle; computeAngleParameters(); } /** * for internal use only * @return the cosines of the inner and outer angle packed in a float */ public float getPackedAngleCos() { return packedAngleCos; } @Override public void write(JmeExporter ex) throws IOException { super.write(ex); OutputCapsule oc = ex.getCapsule(this); oc.write(direction, "direction", new Vector3f()); oc.write(position, "position", new Vector3f()); oc.write(spotInnerAngle, "spotInnerAngle", FastMath.QUARTER_PI / 8); oc.write(spotOuterAngle, "spotOuterAngle", FastMath.QUARTER_PI / 6); oc.write(spotRange, "spotRange", 100); } @Override public void read(JmeImporter im) throws IOException { super.read(im); InputCapsule ic = im.getCapsule(this); spotInnerAngle = ic.readFloat("spotInnerAngle", FastMath.QUARTER_PI / 8); spotOuterAngle = ic.readFloat("spotOuterAngle", FastMath.QUARTER_PI / 6); computeAngleParameters(); direction = (Vector3f) ic.readSavable("direction", new Vector3f()); position = (Vector3f) ic.readSavable("position", new Vector3f()); spotRange = ic.readFloat("spotRange", 100); if (spotRange != 0) { this.invSpotRange = 1 / spotRange; } else { this.invSpotRange = 0; } } @Override public SpotLight clone() { SpotLight s = (SpotLight)super.clone(); s.direction = direction.clone(); s.position = position.clone(); return s; } }