package com.jme3.scene.plugins.blender.curves; import java.nio.FloatBuffer; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.TreeMap; import java.util.logging.Logger; import com.jme3.material.RenderState.FaceCullMode; import com.jme3.math.FastMath; import com.jme3.math.Spline; import com.jme3.math.Spline.SplineType; import com.jme3.math.Vector3f; import com.jme3.math.Vector4f; import com.jme3.scene.VertexBuffer.Type; import com.jme3.scene.mesh.IndexBuffer; import com.jme3.scene.plugins.blender.BlenderContext; import com.jme3.scene.plugins.blender.file.BlenderFileException; import com.jme3.scene.plugins.blender.file.BlenderInputStream; import com.jme3.scene.plugins.blender.file.DynamicArray; import com.jme3.scene.plugins.blender.file.FileBlockHeader; import com.jme3.scene.plugins.blender.file.Pointer; import com.jme3.scene.plugins.blender.file.Structure; import com.jme3.scene.plugins.blender.materials.MaterialContext; import com.jme3.scene.plugins.blender.materials.MaterialHelper; import com.jme3.scene.plugins.blender.meshes.Edge; import com.jme3.scene.plugins.blender.meshes.Face; import com.jme3.scene.plugins.blender.meshes.TemporalMesh; import com.jme3.scene.shape.Curve; import com.jme3.scene.shape.Surface; import com.jme3.util.BufferUtils; /** * A temporal mesh for curves and surfaces. It works in similar way as TemporalMesh for meshes. * It prepares all neccessary lines and faces and allows to apply modifiers just like in regular temporal mesh. * * @author Marcin Roguski (Kaelthas) */ public class CurvesTemporalMesh extends TemporalMesh { private static final Logger LOGGER = Logger.getLogger(CurvesTemporalMesh.class.getName()); private static final int TYPE_BEZIER = 0x0001; private static final int TYPE_NURBS = 0x0004; private static final int FLAG_3D = 0x0001; private static final int FLAG_FRONT = 0x0002; private static final int FLAG_BACK = 0x0004; private static final int FLAG_FILL_CAPS = 0x4000; private static final int FLAG_SMOOTH = 0x0001; protected CurvesHelper curvesHelper; protected boolean is2D; protected boolean isFront; protected boolean isBack; protected boolean fillCaps; protected float bevelStart; protected float bevelEnd; protected List<BezierLine> beziers = new ArrayList<BezierLine>(); protected CurvesTemporalMesh bevelObject; protected CurvesTemporalMesh taperObject; /** The scale that is used if the curve is a bevel or taper curve. */ protected Vector3f scale = new Vector3f(1, 1, 1); /** * The constructor creates an empty temporal mesh. * @param blenderContext * the blender context * @throws BlenderFileException * this will never be thrown here */ protected CurvesTemporalMesh(BlenderContext blenderContext) throws BlenderFileException { super(null, blenderContext, false); } /** * Loads the temporal mesh from the given curve structure. The mesh can be either curve or surface. * @param curveStructure * the structure that contains the curve/surface data * @param blenderContext * the blender context * @throws BlenderFileException * an exception is thrown when problems with reading occur */ public CurvesTemporalMesh(Structure curveStructure, BlenderContext blenderContext) throws BlenderFileException { this(curveStructure, new Vector3f(1, 1, 1), true, blenderContext); } /** * Loads the temporal mesh from the given curve structure. The mesh can be either curve or surface. * @param curveStructure * the structure that contains the curve/surface data * @param scale * the scale used if the current curve is used as a bevel curve * @param loadBevelAndTaper indicates if bevel and taper should be loaded (this is not needed for curves that are loaded to be used as bevel and taper) * @param blenderContext * the blender context * @throws BlenderFileException * an exception is thrown when problems with reading occur */ @SuppressWarnings("unchecked") private CurvesTemporalMesh(Structure curveStructure, Vector3f scale, boolean loadBevelAndTaper, BlenderContext blenderContext) throws BlenderFileException { super(curveStructure, blenderContext, false); name = curveStructure.getName(); curvesHelper = blenderContext.getHelper(CurvesHelper.class); this.scale = scale; int flag = ((Number) curveStructure.getFieldValue("flag")).intValue(); is2D = (flag & FLAG_3D) == 0; if (is2D) { // TODO: add support for 3D flag LOGGER.warning("2D flag not yet supported for curves!"); } isFront = (flag & FLAG_FRONT) != 0; isBack = (flag & FLAG_BACK) != 0; fillCaps = (flag & FLAG_FILL_CAPS) != 0; bevelStart = ((Number) curveStructure.getFieldValue("bevfac1", 0)).floatValue(); bevelEnd = ((Number) curveStructure.getFieldValue("bevfac2", 1)).floatValue(); if (bevelStart > bevelEnd) { float temp = bevelStart; bevelStart = bevelEnd; bevelEnd = temp; } LOGGER.fine("Reading nurbs (and sorting them by material)."); Map<Number, List<Structure>> nurbs = new HashMap<Number, List<Structure>>(); List<Structure> nurbStructures = ((Structure) curveStructure.getFieldValue("nurb")).evaluateListBase(); for (Structure nurb : nurbStructures) { Number matNumber = (Number) nurb.getFieldValue("mat_nr"); List<Structure> nurbList = nurbs.get(matNumber); if (nurbList == null) { nurbList = new ArrayList<Structure>(); nurbs.put(matNumber, nurbList); } nurbList.add(nurb); } LOGGER.fine("Getting materials."); MaterialHelper materialHelper = blenderContext.getHelper(MaterialHelper.class); materials = materialHelper.getMaterials(curveStructure, blenderContext); if (materials != null) { for (MaterialContext materialContext : materials) { materialContext.setFaceCullMode(FaceCullMode.Off); } } LOGGER.fine("Getting or creating bevel object."); bevelObject = loadBevelAndTaper ? this.loadBevelObject(curveStructure) : null; LOGGER.fine("Getting taper object."); Pointer pTaperObject = (Pointer) curveStructure.getFieldValue("taperobj"); if (bevelObject != null && pTaperObject.isNotNull()) { Structure taperObjectStructure = pTaperObject.fetchData().get(0); DynamicArray<Number> scaleArray = (DynamicArray<Number>) taperObjectStructure.getFieldValue("size"); scale = blenderContext.getBlenderKey().isFixUpAxis() ? new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(1).floatValue(), scaleArray.get(2).floatValue()) : new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(2).floatValue(), scaleArray.get(1).floatValue()); Pointer pTaperStructure = (Pointer) taperObjectStructure.getFieldValue("data"); Structure taperStructure = pTaperStructure.fetchData().get(0); taperObject = new CurvesTemporalMesh(taperStructure, blenderContext); } LOGGER.fine("Creating the result curves."); for (Entry<Number, List<Structure>> nurbEntry : nurbs.entrySet()) { for (Structure nurb : nurbEntry.getValue()) { int type = ((Number) nurb.getFieldValue("type")).intValue(); if ((type & TYPE_BEZIER) != 0) { this.loadBezierCurve(nurb, nurbEntry.getKey().intValue()); } else if ((type & TYPE_NURBS) != 0) { this.loadNurbSurface(nurb, nurbEntry.getKey().intValue()); } else { throw new BlenderFileException("Unknown curve type: " + type); } } } if (bevelObject != null && beziers.size() > 0) { this.append(this.applyBevelAndTaper(this, bevelObject, taperObject, blenderContext)); } else { for (BezierLine bezierLine : beziers) { int originalVerticesAmount = vertices.size(); vertices.add(bezierLine.vertices[0]); Vector3f v = bezierLine.vertices[1].subtract(bezierLine.vertices[0]).normalizeLocal(); float temp = v.x; v.x = -v.y; v.y = temp; v.z = 0; normals.add(v);// this will be smoothed in the next iteration for (int i = 1; i < bezierLine.vertices.length; ++i) { vertices.add(bezierLine.vertices[i]); edges.add(new Edge(originalVerticesAmount + i - 1, originalVerticesAmount + i, 0, false, this)); // generating normal for vertex at 'i' v = bezierLine.vertices[i].subtract(bezierLine.vertices[i - 1]).normalizeLocal(); temp = v.x; v.x = -v.y; v.y = temp; v.z = 0; // make the previous normal smooth normals.get(i - 1).addLocal(v).multLocal(0.5f).normalizeLocal(); normals.add(v);// this will be smoothed in the next iteration } } } } /** * The method computes the value of a point at the certain relational distance from its beggining. * @param alongRatio * the relative distance along the curve; should be a value between 0 and 1 inclusive; * if the value exceeds the boundaries it is truncated to them * @return computed value along the curve */ private Vector3f getValueAlongCurve(float alongRatio) { alongRatio = FastMath.clamp(alongRatio, 0, 1); Vector3f result = new Vector3f(); float probeLength = this.getLength() * alongRatio, length = 0; for (BezierLine bezier : beziers) { float edgeLength = bezier.getLength(); if (length + edgeLength >= probeLength) { float ratioAlongEdge = (probeLength - length) / edgeLength; return bezier.getValueAlongCurve(ratioAlongEdge); } length += edgeLength; } return result; } /** * @return the length of the curve */ private float getLength() { float result = 0; for (BezierLine bezier : beziers) { result += bezier.getLength(); } return result; } /** * The methods loads the bezier curve from the given structure. * @param nurbStructure * the structure containing a single curve definition * @param materialIndex * the index of this segment's material * @throws BlenderFileException * an exception is thrown when problems with reading occur */ private void loadBezierCurve(Structure nurbStructure, int materialIndex) throws BlenderFileException { Pointer pBezierTriple = (Pointer) nurbStructure.getFieldValue("bezt"); if (pBezierTriple.isNotNull()) { int resolution = ((Number) nurbStructure.getFieldValue("resolu")).intValue(); boolean cyclic = (((Number) nurbStructure.getFieldValue("flagu")).intValue() & 0x01) != 0; boolean smooth = (((Number) nurbStructure.getFieldValue("flag")).intValue() & FLAG_SMOOTH) != 0; // creating the curve object BezierCurve bezierCurve = new BezierCurve(0, pBezierTriple.fetchData(), 3, blenderContext.getBlenderKey().isFixUpAxis()); List<Vector3f> controlPoints = bezierCurve.getControlPoints(); if (cyclic) { // copy the first three points at the end for (int i = 0; i < 3; ++i) { controlPoints.add(controlPoints.get(i)); } } // removing the first and last handles controlPoints.remove(0); controlPoints.remove(controlPoints.size() - 1); // creating curve Curve curve = new Curve(new Spline(SplineType.Bezier, controlPoints, 0, false), resolution); FloatBuffer vertsBuffer = (FloatBuffer) curve.getBuffer(Type.Position).getData(); beziers.add(new BezierLine(BufferUtils.getVector3Array(vertsBuffer), materialIndex, smooth, cyclic)); } } /** * This method loads the NURBS curve or surface. * @param nurb * the NURBS data structure * @throws BlenderFileException * an exception is thrown when problems with reading occur */ @SuppressWarnings("unchecked") private void loadNurbSurface(Structure nurb, int materialIndex) throws BlenderFileException { // loading the knots List<Float>[] knots = new List[2]; Pointer[] pKnots = new Pointer[] { (Pointer) nurb.getFieldValue("knotsu"), (Pointer) nurb.getFieldValue("knotsv") }; for (int i = 0; i < knots.length; ++i) { if (pKnots[i].isNotNull()) { FileBlockHeader fileBlockHeader = blenderContext.getFileBlock(pKnots[i].getOldMemoryAddress()); BlenderInputStream blenderInputStream = blenderContext.getInputStream(); blenderInputStream.setPosition(fileBlockHeader.getBlockPosition()); int knotsAmount = fileBlockHeader.getCount() * fileBlockHeader.getSize() / 4; knots[i] = new ArrayList<Float>(knotsAmount); for (int j = 0; j < knotsAmount; ++j) { knots[i].add(Float.valueOf(blenderInputStream.readFloat())); } } } // loading the flags and orders (basis functions degrees) int flag = ((Number) nurb.getFieldValue("flag")).intValue(); boolean smooth = (flag & FLAG_SMOOTH) != 0; int flagU = ((Number) nurb.getFieldValue("flagu")).intValue(); int flagV = ((Number) nurb.getFieldValue("flagv")).intValue(); int orderU = ((Number) nurb.getFieldValue("orderu")).intValue(); int orderV = ((Number) nurb.getFieldValue("orderv")).intValue(); // loading control points and their weights int pntsU = ((Number) nurb.getFieldValue("pntsu")).intValue(); int pntsV = ((Number) nurb.getFieldValue("pntsv")).intValue(); List<Structure> bPoints = ((Pointer) nurb.getFieldValue("bp")).fetchData(); List<List<Vector4f>> controlPoints = new ArrayList<List<Vector4f>>(pntsV); for (int i = 0; i < pntsV; ++i) { List<Vector4f> uControlPoints = new ArrayList<Vector4f>(pntsU); for (int j = 0; j < pntsU; ++j) { DynamicArray<Float> vec = (DynamicArray<Float>) bPoints.get(j + i * pntsU).getFieldValue("vec"); if (blenderContext.getBlenderKey().isFixUpAxis()) { uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(2).floatValue(), -vec.get(1).floatValue(), vec.get(3).floatValue())); } else { uControlPoints.add(new Vector4f(vec.get(0).floatValue(), vec.get(1).floatValue(), vec.get(2).floatValue(), vec.get(3).floatValue())); } } if ((flagU & 0x01) != 0) { for (int k = 0; k < orderU - 1; ++k) { uControlPoints.add(uControlPoints.get(k)); } } controlPoints.add(uControlPoints); } if ((flagV & 0x01) != 0) { for (int k = 0; k < orderV - 1; ++k) { controlPoints.add(controlPoints.get(k)); } } int originalVerticesAmount = vertices.size(); int resolu = ((Number) nurb.getFieldValue("resolu")).intValue(); if (knots[1] == null) {// creating the NURB curve Curve curve = new Curve(new Spline(controlPoints.get(0), knots[0]), resolu); FloatBuffer vertsBuffer = (FloatBuffer) curve.getBuffer(Type.Position).getData(); beziers.add(new BezierLine(BufferUtils.getVector3Array(vertsBuffer), materialIndex, smooth, false)); } else {// creating the NURB surface int resolv = ((Number) nurb.getFieldValue("resolv")).intValue(); int uSegments = resolu * controlPoints.get(0).size() - 1; int vSegments = resolv * controlPoints.size() - 1; Surface nurbSurface = Surface.createNurbsSurface(controlPoints, knots, uSegments, vSegments, orderU, orderV, smooth); FloatBuffer vertsBuffer = (FloatBuffer) nurbSurface.getBuffer(Type.Position).getData(); vertices.addAll(Arrays.asList(BufferUtils.getVector3Array(vertsBuffer))); FloatBuffer normalsBuffer = (FloatBuffer) nurbSurface.getBuffer(Type.Normal).getData(); normals.addAll(Arrays.asList(BufferUtils.getVector3Array(normalsBuffer))); IndexBuffer indexBuffer = nurbSurface.getIndexBuffer(); for (int i = 0; i < indexBuffer.size(); i += 3) { int index1 = indexBuffer.get(i) + originalVerticesAmount; int index2 = indexBuffer.get(i + 1) + originalVerticesAmount; int index3 = indexBuffer.get(i + 2) + originalVerticesAmount; faces.add(new Face(new Integer[] { index1, index2, index3 }, smooth, materialIndex, null, null, this)); } } } /** * The method loads the bevel object that sould be applied to curve. It can either be another curve or a generated one * based on the bevel generating parameters in blender. * @param curveStructure * the structure with the curve's data (the curve being loaded, NOT the bevel curve) * @return the curve's bevel object * @throws BlenderFileException * an exception is thrown when problems with reading occur */ @SuppressWarnings("unchecked") private CurvesTemporalMesh loadBevelObject(Structure curveStructure) throws BlenderFileException { CurvesTemporalMesh bevelObject = null; Pointer pBevelObject = (Pointer) curveStructure.getFieldValue("bevobj"); boolean cyclic = false; if (pBevelObject.isNotNull()) { Structure bevelObjectStructure = pBevelObject.fetchData().get(0); DynamicArray<Number> scaleArray = (DynamicArray<Number>) bevelObjectStructure.getFieldValue("size"); Vector3f scale = blenderContext.getBlenderKey().isFixUpAxis() ? new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(1).floatValue(), scaleArray.get(2).floatValue()) : new Vector3f(scaleArray.get(0).floatValue(), scaleArray.get(2).floatValue(), scaleArray.get(1).floatValue()); Pointer pBevelStructure = (Pointer) bevelObjectStructure.getFieldValue("data"); Structure bevelStructure = pBevelStructure.fetchData().get(0); bevelObject = new CurvesTemporalMesh(bevelStructure, scale, false, blenderContext); // transforming the bezier lines from plane XZ to plane YZ for (BezierLine bl : bevelObject.beziers) { for (Vector3f v : bl.vertices) { // casting the bezier curve orthogonally on the plane XZ (making Y = 0) and then moving the plane XZ to ZY in a way that: // -Z => +Y and +X => +Z and +Y => +X (but because casting would make Y = 0, then we simply set X = 0) v.y = -v.z; v.z = v.x; v.x = 0; } // bevel curves should not have repeated the first vertex at the end when they are cyclic (this is handled differently) if (bl.isCyclic()) { bl.removeLastVertex(); } } } else { fillCaps = false;// this option is inactive in blender when there is no bevel object applied int bevResol = ((Number) curveStructure.getFieldValue("bevresol")).intValue(); float extrude = ((Number) curveStructure.getFieldValue("ext1")).floatValue(); float bevelDepth = ((Number) curveStructure.getFieldValue("ext2")).floatValue(); float offset = ((Number) curveStructure.getFieldValue("offset", 0)).floatValue(); if (offset != 0) { // TODO: add support for offset parameter LOGGER.warning("Offset parameter not yet supported."); } Curve bevelCurve = null; if (bevelDepth > 0.0f) { float handlerLength = bevelDepth / 2.0f; cyclic = !isFront && !isBack; List<Vector3f> conrtolPoints = new ArrayList<Vector3f>(); // blenders from 2.49 to 2.52 did not pay attention to fron and back faces // so in order to draw the scene exactly as it is in different blender versions the blender version is checked here // when neither fron and back face is selected all version behave the same and draw full bevel around the curve if (cyclic || blenderContext.getBlenderVersion() < 253) { conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, 0)); conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, -handlerLength)); conrtolPoints.add(new Vector3f(0, -extrude - handlerLength, -bevelDepth)); conrtolPoints.add(new Vector3f(0, -extrude, -bevelDepth)); conrtolPoints.add(new Vector3f(0, -extrude + handlerLength, -bevelDepth)); if (extrude > 0) { conrtolPoints.add(new Vector3f(0, extrude - handlerLength, -bevelDepth)); conrtolPoints.add(new Vector3f(0, extrude, -bevelDepth)); conrtolPoints.add(new Vector3f(0, extrude + handlerLength, -bevelDepth)); } conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, -handlerLength)); conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, 0)); if (cyclic) { conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, handlerLength)); conrtolPoints.add(new Vector3f(0, extrude + handlerLength, bevelDepth)); conrtolPoints.add(new Vector3f(0, extrude, bevelDepth)); conrtolPoints.add(new Vector3f(0, extrude - handlerLength, bevelDepth)); if (extrude > 0) { conrtolPoints.add(new Vector3f(0, -extrude + handlerLength, bevelDepth)); conrtolPoints.add(new Vector3f(0, -extrude, bevelDepth)); conrtolPoints.add(new Vector3f(0, -extrude - handlerLength, bevelDepth)); } conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, handlerLength)); conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, 0)); } } else { if (extrude > 0) { if (isBack) { conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, 0)); conrtolPoints.add(new Vector3f(0, -extrude - bevelDepth, -handlerLength)); conrtolPoints.add(new Vector3f(0, -extrude - handlerLength, -bevelDepth)); } conrtolPoints.add(new Vector3f(0, -extrude, -bevelDepth)); conrtolPoints.add(new Vector3f(0, -extrude + handlerLength, -bevelDepth)); conrtolPoints.add(new Vector3f(0, extrude - handlerLength, -bevelDepth)); conrtolPoints.add(new Vector3f(0, extrude, -bevelDepth)); if (isFront) { conrtolPoints.add(new Vector3f(0, extrude + handlerLength, -bevelDepth)); conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, -handlerLength)); conrtolPoints.add(new Vector3f(0, extrude + bevelDepth, 0)); } } else { if (isFront && isBack) { conrtolPoints.add(new Vector3f(0, -bevelDepth, 0)); conrtolPoints.add(new Vector3f(0, -bevelDepth, -handlerLength)); conrtolPoints.add(new Vector3f(0, -handlerLength, -bevelDepth)); conrtolPoints.add(new Vector3f(0, 0, -bevelDepth)); conrtolPoints.add(new Vector3f(0, handlerLength, -bevelDepth)); conrtolPoints.add(new Vector3f(0, bevelDepth, -handlerLength)); conrtolPoints.add(new Vector3f(0, bevelDepth, 0)); } else { if (isBack) { conrtolPoints.add(new Vector3f(0, -bevelDepth, 0)); conrtolPoints.add(new Vector3f(0, -bevelDepth, -handlerLength)); conrtolPoints.add(new Vector3f(0, -handlerLength, -bevelDepth)); conrtolPoints.add(new Vector3f(0, 0, -bevelDepth)); } else { conrtolPoints.add(new Vector3f(0, 0, -bevelDepth)); conrtolPoints.add(new Vector3f(0, handlerLength, -bevelDepth)); conrtolPoints.add(new Vector3f(0, bevelDepth, -handlerLength)); conrtolPoints.add(new Vector3f(0, bevelDepth, 0)); } } } } bevelCurve = new Curve(new Spline(SplineType.Bezier, conrtolPoints, 0, false), bevResol); } else if (extrude > 0.0f) { Spline bevelSpline = new Spline(SplineType.Linear, new Vector3f[] { new Vector3f(0, extrude, 0), new Vector3f(0, -extrude, 0) }, 1, false); bevelCurve = new Curve(bevelSpline, bevResol); } if (bevelCurve != null) { bevelObject = new CurvesTemporalMesh(blenderContext); FloatBuffer vertsBuffer = (FloatBuffer) bevelCurve.getBuffer(Type.Position).getData(); Vector3f[] verts = BufferUtils.getVector3Array(vertsBuffer); if (cyclic) {// get rid of the last vertex which is identical to the first one verts = Arrays.copyOf(verts, verts.length - 1); } bevelObject.beziers.add(new BezierLine(verts, 0, false, cyclic)); } } return bevelObject; } private List<BezierLine> getScaledBeziers() { if (scale.equals(Vector3f.UNIT_XYZ)) { return beziers; } List<BezierLine> result = new ArrayList<BezierLine>(); for (BezierLine bezierLine : beziers) { result.add(bezierLine.scale(scale)); } return result; } /** * This method applies bevel and taper objects to the curve. * @param curve * the curve we apply the objects to * @param bevelObject * the bevel object * @param taperObject * the taper object * @param blenderContext * the blender context * @return a list of geometries representing the beveled and/or tapered curve * @throws BlenderFileException * an exception is thrown when problems with reading occur */ private CurvesTemporalMesh applyBevelAndTaper(CurvesTemporalMesh curve, CurvesTemporalMesh bevelObject, CurvesTemporalMesh taperObject, BlenderContext blenderContext) throws BlenderFileException { List<BezierLine> bevelBezierLines = bevelObject.getScaledBeziers(); List<BezierLine> curveLines = curve.beziers; if (bevelBezierLines.size() == 0 || curveLines.size() == 0) { return null; } CurvesTemporalMesh result = new CurvesTemporalMesh(blenderContext); for (BezierLine curveLine : curveLines) { Vector3f[] curveLineVertices = curveLine.getVertices(bevelStart, bevelEnd); for (BezierLine bevelBezierLine : bevelBezierLines) { CurvesTemporalMesh partResult = new CurvesTemporalMesh(blenderContext); Vector3f[] bevelLineVertices = bevelBezierLine.getVertices(); List<Vector3f[]> bevels = new ArrayList<Vector3f[]>(); Vector3f[] bevelPoints = curvesHelper.transformToFirstLineOfBevelPoints(bevelLineVertices, curveLineVertices[0], curveLineVertices[1]); bevels.add(bevelPoints); for (int i = 1; i < curveLineVertices.length - 1; ++i) { bevelPoints = curvesHelper.transformBevel(bevelPoints, curveLineVertices[i - 1], curveLineVertices[i], curveLineVertices[i + 1]); bevels.add(bevelPoints); } bevelPoints = curvesHelper.transformBevel(bevelPoints, curveLineVertices[curveLineVertices.length - 2], curveLineVertices[curveLineVertices.length - 1], null); bevels.add(bevelPoints); Vector3f subtractResult = new Vector3f(); if (bevels.size() > 2) { // changing the first and last bevel so that they are parallel to their neighbours (blender works this way) // notice this implicates that the distances of every corresponding point in the two bevels must be identical and // equal to the distance between the points on curve that define the bevel position // so instead doing complicated rotations on each point we will simply properly translate each of them int[][] pointIndexes = new int[][] { { 0, 1 }, { curveLineVertices.length - 1, curveLineVertices.length - 2 } }; for (int[] indexes : pointIndexes) { float distance = curveLineVertices[indexes[1]].subtract(curveLineVertices[indexes[0]], subtractResult).length(); Vector3f[] bevel = bevels.get(indexes[0]); Vector3f[] nextBevel = bevels.get(indexes[1]); for (int i = 0; i < bevel.length; ++i) { float d = bevel[i].subtract(nextBevel[i], subtractResult).length(); subtractResult.normalizeLocal().multLocal(distance - d); bevel[i].addLocal(subtractResult); } } } if (taperObject != null) { float curveLength = curveLine.getLength(), lengthAlongCurve = bevelStart; for (int i = 0; i < curveLineVertices.length; ++i) { if (i > 0) { lengthAlongCurve += curveLineVertices[i].subtract(curveLineVertices[i - 1], subtractResult).length(); } float taperScale = -taperObject.getValueAlongCurve(lengthAlongCurve / curveLength).z * taperObject.scale.z; if (taperScale != 1) { this.applyScale(bevels.get(i), curveLineVertices[i], taperScale); } } } // adding vertices to the part result for (Vector3f[] bevel : bevels) { for (Vector3f d : bevel) { partResult.getVertices().add(d); } } // preparing faces for the part result (each face is a quad) int bevelVertCount = bevelPoints.length; for (int i = 0; i < bevels.size() - 1; ++i) { for (int j = 0; j < bevelVertCount - 1; ++j) { Integer[] indexes = new Integer[] { i * bevelVertCount + j + 1, (i + 1) * bevelVertCount + j + 1, (i + 1) * bevelVertCount + j, i * bevelVertCount + j }; partResult.getFaces().add(new Face(indexes, curveLine.isSmooth(), curveLine.getMaterialNumber(), null, null, partResult)); partResult.getEdges().add(new Edge(indexes[0], indexes[1], 0, true, partResult)); partResult.getEdges().add(new Edge(indexes[1], indexes[2], 0, true, partResult)); partResult.getEdges().add(new Edge(indexes[2], indexes[3], 0, true, partResult)); partResult.getEdges().add(new Edge(indexes[3], indexes[0], 0, true, partResult)); } if (bevelBezierLine.isCyclic()) { int j = bevelVertCount - 1; Integer[] indexes = new Integer[] { i * bevelVertCount, (i + 1) * bevelVertCount, (i + 1) * bevelVertCount + j, i * bevelVertCount + j }; partResult.getFaces().add(new Face(indexes, curveLine.isSmooth(), curveLine.getMaterialNumber(), null, null, partResult)); partResult.getEdges().add(new Edge(indexes[0], indexes[1], 0, true, partResult)); partResult.getEdges().add(new Edge(indexes[1], indexes[2], 0, true, partResult)); partResult.getEdges().add(new Edge(indexes[2], indexes[3], 0, true, partResult)); partResult.getEdges().add(new Edge(indexes[3], indexes[0], 0, true, partResult)); } } partResult.generateNormals(); if (fillCaps) {// caps in blender behave as if they weren't affected by the smooth factor // START CAP Vector3f[] cap = bevels.get(0); List<Integer> capIndexes = new ArrayList<Integer>(cap.length); Vector3f capNormal = curveLineVertices[0].subtract(curveLineVertices[1]).normalizeLocal(); for (int i = 0; i < cap.length; ++i) { capIndexes.add(partResult.getVertices().size()); partResult.getVertices().add(cap[i]); partResult.getNormals().add(capNormal); } Collections.reverse(capIndexes);// the indexes ned to be reversed for the face to have fron face outside the beveled line partResult.getFaces().add(new Face(capIndexes.toArray(new Integer[capIndexes.size()]), false, curveLine.getMaterialNumber(), null, null, partResult)); for (int i = 1; i < capIndexes.size(); ++i) { partResult.getEdges().add(new Edge(capIndexes.get(i - 1), capIndexes.get(i), 0, true, partResult)); } // END CAP cap = bevels.get(bevels.size() - 1); capIndexes.clear(); capNormal = curveLineVertices[curveLineVertices.length - 1].subtract(curveLineVertices[curveLineVertices.length - 2]).normalizeLocal(); for (int i = 0; i < cap.length; ++i) { capIndexes.add(partResult.getVertices().size()); partResult.getVertices().add(cap[i]); partResult.getNormals().add(capNormal); } partResult.getFaces().add(new Face(capIndexes.toArray(new Integer[capIndexes.size()]), false, curveLine.getMaterialNumber(), null, null, partResult)); for (int i = 1; i < capIndexes.size(); ++i) { partResult.getEdges().add(new Edge(capIndexes.get(i - 1), capIndexes.get(i), 0, true, partResult)); } } result.append(partResult); } } return result; } /** * The method generates normals for the curve. If any normals were already stored they are discarded. */ private void generateNormals() { Map<Integer, Vector3f> normalMap = new TreeMap<Integer, Vector3f>(); for (Face face : faces) { // the first 3 verts are enough here (all faces are triangles except for the caps, but those are fully flat anyway) int index1 = face.getIndexes().get(0); int index2 = face.getIndexes().get(1); int index3 = face.getIndexes().get(2); Vector3f n = FastMath.computeNormal(vertices.get(index1), vertices.get(index2), vertices.get(index3)); for (int index : face.getIndexes()) { Vector3f normal = normalMap.get(index); if (normal == null) { normalMap.put(index, n.clone()); } else { normal.addLocal(n).normalizeLocal(); } } } normals.clear(); Collections.addAll(normals, new Vector3f[normalMap.size()]); for (Entry<Integer, Vector3f> entry : normalMap.entrySet()) { normals.set(entry.getKey(), entry.getValue()); } } /** * the method applies scale for the given bevel points. The points table is * being modified so expect ypur result there. * * @param points * the bevel points * @param centerPoint * the center point of the bevel * @param scale * the scale to be applied */ private void applyScale(Vector3f[] points, Vector3f centerPoint, float scale) { Vector3f taperScaleVector = new Vector3f(); for (Vector3f p : points) { taperScaleVector.set(centerPoint).subtractLocal(p).multLocal(1 - scale); p.addLocal(taperScaleVector); } } /** * A helper class that represents a single bezier line. It consists of Edge's and allows to * get a subline of a lentgh of the line. * * @author Marcin Roguski (Kaelthas) */ public static class BezierLine { /** The edges of the bezier line. */ private Vector3f[] vertices; /** The material number of the line. */ private int materialNumber; /** Indicates if the line is smooth of flat. */ private boolean smooth; /** The length of the line. */ private float length; /** Indicates if the current line is cyclic or not. */ private boolean cyclic; public BezierLine(Vector3f[] vertices, int materialNumber, boolean smooth, boolean cyclik) { this.vertices = vertices; this.materialNumber = materialNumber; this.smooth = smooth; cyclic = cyclik; this.recomputeLength(); } public BezierLine scale(Vector3f scale) { BezierLine result = new BezierLine(vertices, materialNumber, smooth, cyclic); result.vertices = new Vector3f[vertices.length]; for (int i = 0; i < vertices.length; ++i) { result.vertices[i] = vertices[i].mult(scale); } result.recomputeLength(); return result; } public void removeLastVertex() { Vector3f[] newVertices = new Vector3f[vertices.length - 1]; for (int i = 0; i < vertices.length - 1; ++i) { newVertices[i] = vertices[i]; } vertices = newVertices; this.recomputeLength(); } private void recomputeLength() { length = 0; for (int i = 1; i < vertices.length; ++i) { length += vertices[i - 1].distance(vertices[i]); } if (cyclic) { // if the first vertex is repeated at the end the distance will be = 0 so it won't affect the result, and if it is not repeated // then it is neccessary to add the length between the last and the first vertex length += vertices[vertices.length - 1].distance(vertices[0]); } } public Vector3f[] getVertices() { return this.getVertices(0, 1); } public Vector3f[] getVertices(float startSlice, float endSlice) { if (startSlice == 0 && endSlice == 1) { return vertices; } List<Vector3f> result = new ArrayList<Vector3f>(); float length = this.getLength(), temp = 0; float startSliceLength = length * startSlice; float endSliceLength = length * endSlice; int index = 1; if (startSlice > 0) { while (temp < startSliceLength) { Vector3f v1 = vertices[index - 1]; Vector3f v2 = vertices[index++]; float edgeLength = v1.distance(v2); temp += edgeLength; if (temp == startSliceLength) { result.add(v2); } else if (temp > startSliceLength) { result.add(v1.subtract(v2).normalizeLocal().multLocal(temp - startSliceLength).addLocal(v2)); } } } if (endSlice < 1) { if (index == vertices.length) { Vector3f v1 = vertices[vertices.length - 2]; Vector3f v2 = vertices[vertices.length - 1]; result.add(v1.subtract(v2).normalizeLocal().multLocal(length - endSliceLength).addLocal(v2)); } else { for (int i = index; i < vertices.length && temp < endSliceLength; ++i) { Vector3f v1 = vertices[index - 1]; Vector3f v2 = vertices[index++]; temp += v1.distance(v2); if (temp == endSliceLength) { result.add(v2); } else if (temp > endSliceLength) { result.add(v1.subtract(v2).normalizeLocal().multLocal(temp - startSliceLength).addLocal(v2)); } } } } else { result.addAll(Arrays.asList(Arrays.copyOfRange(vertices, index, vertices.length))); } return result.toArray(new Vector3f[result.size()]); } /** * The method computes the value of a point at the certain relational distance from its beggining. * @param alongRatio * the relative distance along the curve; should be a value between 0 and 1 inclusive; * if the value exceeds the boundaries it is truncated to them * @return computed value along the curve */ public Vector3f getValueAlongCurve(float alongRatio) { alongRatio = FastMath.clamp(alongRatio, 0, 1); Vector3f result = new Vector3f(); float probeLength = this.getLength() * alongRatio; float length = 0; for (int i = 1; i < vertices.length; ++i) { float edgeLength = vertices[i].distance(vertices[i - 1]); if (length + edgeLength > probeLength) { float ratioAlongEdge = (probeLength - length) / edgeLength; return FastMath.interpolateLinear(ratioAlongEdge, vertices[i - 1], vertices[i]); } else if (length + edgeLength == probeLength) { return vertices[i]; } length += edgeLength; } return result; } /** * @return the material number of this bezier line */ public int getMaterialNumber() { return materialNumber; } /** * @return indicates if the line is smooth of flat */ public boolean isSmooth() { return smooth; } /** * @return the length of this bezier line */ public float getLength() { return length; } /** * @return indicates if the current line is cyclic or not */ public boolean isCyclic() { return cyclic; } } }