/******************************************************************************* * Copyright (c) 2013, Daniel Murphy * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ package org.jbox2d.dynamics.joints; import org.jbox2d.common.Mat22; import org.jbox2d.common.Mat33; import org.jbox2d.common.MathUtils; import org.jbox2d.common.Rot; import org.jbox2d.common.Settings; import org.jbox2d.common.Vec2; import org.jbox2d.common.Vec3; import org.jbox2d.dynamics.Body; import org.jbox2d.dynamics.SolverData; import org.jbox2d.pooling.IWorldPool; //Point-to-point constraint //C = p2 - p1 //Cdot = v2 - v1 // = v2 + cross(w2, r2) - v1 - cross(w1, r1) //J = [-I -r1_skew I r2_skew ] //Identity used: //w k % (rx i + ry j) = w * (-ry i + rx j) //Motor constraint //Cdot = w2 - w1 //J = [0 0 -1 0 0 1] //K = invI1 + invI2 /** * A revolute joint constrains two bodies to share a common point while they are free to rotate * about the point. The relative rotation about the shared point is the joint angle. You can limit * the relative rotation with a joint limit that specifies a lower and upper angle. You can use a * motor to drive the relative rotation about the shared point. A maximum motor torque is provided * so that infinite forces are not generated. * * @author Daniel Murphy */ public class RevoluteJoint extends Joint { // Solver shared protected final Vec2 m_localAnchorA = new Vec2(); protected final Vec2 m_localAnchorB = new Vec2(); private final Vec3 m_impulse = new Vec3(); private float m_motorImpulse; private boolean m_enableMotor; private float m_maxMotorTorque; private float m_motorSpeed; private boolean m_enableLimit; protected float m_referenceAngle; private float m_lowerAngle; private float m_upperAngle; // Solver temp private int m_indexA; private int m_indexB; private final Vec2 m_rA = new Vec2(); private final Vec2 m_rB = new Vec2(); private final Vec2 m_localCenterA = new Vec2(); private final Vec2 m_localCenterB = new Vec2(); private float m_invMassA; private float m_invMassB; private float m_invIA; private float m_invIB; private final Mat33 m_mass = new Mat33(); // effective mass for point-to-point constraint. private float m_motorMass; // effective mass for motor/limit angular constraint. private LimitState m_limitState; protected RevoluteJoint(IWorldPool argWorld, RevoluteJointDef def) { super(argWorld, def); m_localAnchorA.set(def.localAnchorA); m_localAnchorB.set(def.localAnchorB); m_referenceAngle = def.referenceAngle; m_motorImpulse = 0; m_lowerAngle = def.lowerAngle; m_upperAngle = def.upperAngle; m_maxMotorTorque = def.maxMotorTorque; m_motorSpeed = def.motorSpeed; m_enableLimit = def.enableLimit; m_enableMotor = def.enableMotor; m_limitState = LimitState.INACTIVE; } @Override public void initVelocityConstraints(final SolverData data) { m_indexA = m_bodyA.m_islandIndex; m_indexB = m_bodyB.m_islandIndex; m_localCenterA.set(m_bodyA.m_sweep.localCenter); m_localCenterB.set(m_bodyB.m_sweep.localCenter); m_invMassA = m_bodyA.m_invMass; m_invMassB = m_bodyB.m_invMass; m_invIA = m_bodyA.m_invI; m_invIB = m_bodyB.m_invI; // Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; // Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; final Rot qA = pool.popRot(); final Rot qB = pool.popRot(); final Vec2 temp = pool.popVec2(); qA.set(aA); qB.set(aB); // Compute the effective masses. Rot.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA); Rot.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; boolean fixedRotation = (iA + iB == 0.0f); m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB; m_mass.ex.y = m_mass.ey.x; m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; m_mass.ez.y = m_rA.x * iA + m_rB.x * iB; m_mass.ex.z = m_mass.ez.x; m_mass.ey.z = m_mass.ez.y; m_mass.ez.z = iA + iB; m_motorMass = iA + iB; if (m_motorMass > 0.0f) { m_motorMass = 1.0f / m_motorMass; } if (m_enableMotor == false || fixedRotation) { m_motorImpulse = 0.0f; } if (m_enableLimit && fixedRotation == false) { float jointAngle = aB - aA - m_referenceAngle; if (MathUtils.abs(m_upperAngle - m_lowerAngle) < 2.0f * Settings.angularSlop) { m_limitState = LimitState.EQUAL; } else if (jointAngle <= m_lowerAngle) { if (m_limitState != LimitState.AT_LOWER) { m_impulse.z = 0.0f; } m_limitState = LimitState.AT_LOWER; } else if (jointAngle >= m_upperAngle) { if (m_limitState != LimitState.AT_UPPER) { m_impulse.z = 0.0f; } m_limitState = LimitState.AT_UPPER; } else { m_limitState = LimitState.INACTIVE; m_impulse.z = 0.0f; } } else { m_limitState = LimitState.INACTIVE; } if (data.step.warmStarting) { final Vec2 P = pool.popVec2(); // Scale impulses to support a variable time step. m_impulse.x *= data.step.dtRatio; m_impulse.y *= data.step.dtRatio; m_motorImpulse *= data.step.dtRatio; P.x = m_impulse.x; P.y = m_impulse.y; vA.x -= mA * P.x; vA.y -= mA * P.y; wA -= iA * (Vec2.cross(m_rA, P) + m_motorImpulse + m_impulse.z); vB.x += mB * P.x; vB.y += mB * P.y; wB += iB * (Vec2.cross(m_rB, P) + m_motorImpulse + m_impulse.z); pool.pushVec2(1); } else { m_impulse.setZero(); m_motorImpulse = 0.0f; } // data.velocities[m_indexA].v.set(vA); data.velocities[m_indexA].w = wA; // data.velocities[m_indexB].v.set(vB); data.velocities[m_indexB].w = wB; pool.pushVec2(1); pool.pushRot(2); } @Override public void solveVelocityConstraints(final SolverData data) { Vec2 vA = data.velocities[m_indexA].v; float wA = data.velocities[m_indexA].w; Vec2 vB = data.velocities[m_indexB].v; float wB = data.velocities[m_indexB].w; float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; boolean fixedRotation = (iA + iB == 0.0f); // Solve motor constraint. if (m_enableMotor && m_limitState != LimitState.EQUAL && fixedRotation == false) { float Cdot = wB - wA - m_motorSpeed; float impulse = -m_motorMass * Cdot; float oldImpulse = m_motorImpulse; float maxImpulse = data.step.dt * m_maxMotorTorque; m_motorImpulse = MathUtils.clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); impulse = m_motorImpulse - oldImpulse; wA -= iA * impulse; wB += iB * impulse; } final Vec2 temp = pool.popVec2(); // Solve limit constraint. if (m_enableLimit && m_limitState != LimitState.INACTIVE && fixedRotation == false) { final Vec2 Cdot1 = pool.popVec2(); final Vec3 Cdot = pool.popVec3(); // Solve point-to-point constraint Vec2.crossToOutUnsafe(wA, m_rA, temp); Vec2.crossToOutUnsafe(wB, m_rB, Cdot1); Cdot1.addLocal(vB).subLocal(vA).subLocal(temp); float Cdot2 = wB - wA; Cdot.set(Cdot1.x, Cdot1.y, Cdot2); Vec3 impulse = pool.popVec3(); m_mass.solve33ToOut(Cdot, impulse); impulse.negateLocal(); if (m_limitState == LimitState.EQUAL) { m_impulse.addLocal(impulse); } else if (m_limitState == LimitState.AT_LOWER) { float newImpulse = m_impulse.z + impulse.z; if (newImpulse < 0.0f) { final Vec2 rhs = pool.popVec2(); rhs.set(m_mass.ez.x, m_mass.ez.y).mulLocal(m_impulse.z).subLocal(Cdot1); m_mass.solve22ToOut(rhs, temp); impulse.x = temp.x; impulse.y = temp.y; impulse.z = -m_impulse.z; m_impulse.x += temp.x; m_impulse.y += temp.y; m_impulse.z = 0.0f; pool.pushVec2(1); } else { m_impulse.addLocal(impulse); } } else if (m_limitState == LimitState.AT_UPPER) { float newImpulse = m_impulse.z + impulse.z; if (newImpulse > 0.0f) { final Vec2 rhs = pool.popVec2(); rhs.set(m_mass.ez.x, m_mass.ez.y).mulLocal(m_impulse.z).subLocal(Cdot1); m_mass.solve22ToOut(rhs, temp); impulse.x = temp.x; impulse.y = temp.y; impulse.z = -m_impulse.z; m_impulse.x += temp.x; m_impulse.y += temp.y; m_impulse.z = 0.0f; pool.pushVec2(1); } else { m_impulse.addLocal(impulse); } } final Vec2 P = pool.popVec2(); P.set(impulse.x, impulse.y); vA.x -= mA * P.x; vA.y -= mA * P.y; wA -= iA * (Vec2.cross(m_rA, P) + impulse.z); vB.x += mB * P.x; vB.y += mB * P.y; wB += iB * (Vec2.cross(m_rB, P) + impulse.z); pool.pushVec2(2); pool.pushVec3(2); } else { // Solve point-to-point constraint Vec2 Cdot = pool.popVec2(); Vec2 impulse = pool.popVec2(); Vec2.crossToOutUnsafe(wA, m_rA, temp); Vec2.crossToOutUnsafe(wB, m_rB, Cdot); Cdot.addLocal(vB).subLocal(vA).subLocal(temp); m_mass.solve22ToOut(Cdot.negateLocal(), impulse); // just leave negated m_impulse.x += impulse.x; m_impulse.y += impulse.y; vA.x -= mA * impulse.x; vA.y -= mA * impulse.y; wA -= iA * Vec2.cross(m_rA, impulse); vB.x += mB * impulse.x; vB.y += mB * impulse.y; wB += iB * Vec2.cross(m_rB, impulse); pool.pushVec2(2); } // data.velocities[m_indexA].v.set(vA); data.velocities[m_indexA].w = wA; // data.velocities[m_indexB].v.set(vB); data.velocities[m_indexB].w = wB; pool.pushVec2(1); } @Override public boolean solvePositionConstraints(final SolverData data) { final Rot qA = pool.popRot(); final Rot qB = pool.popRot(); Vec2 cA = data.positions[m_indexA].c; float aA = data.positions[m_indexA].a; Vec2 cB = data.positions[m_indexB].c; float aB = data.positions[m_indexB].a; qA.set(aA); qB.set(aB); float angularError = 0.0f; float positionError = 0.0f; boolean fixedRotation = (m_invIA + m_invIB == 0.0f); // Solve angular limit constraint. if (m_enableLimit && m_limitState != LimitState.INACTIVE && fixedRotation == false) { float angle = aB - aA - m_referenceAngle; float limitImpulse = 0.0f; if (m_limitState == LimitState.EQUAL) { // Prevent large angular corrections float C = MathUtils.clamp(angle - m_lowerAngle, -Settings.maxAngularCorrection, Settings.maxAngularCorrection); limitImpulse = -m_motorMass * C; angularError = MathUtils.abs(C); } else if (m_limitState == LimitState.AT_LOWER) { float C = angle - m_lowerAngle; angularError = -C; // Prevent large angular corrections and allow some slop. C = MathUtils.clamp(C + Settings.angularSlop, -Settings.maxAngularCorrection, 0.0f); limitImpulse = -m_motorMass * C; } else if (m_limitState == LimitState.AT_UPPER) { float C = angle - m_upperAngle; angularError = C; // Prevent large angular corrections and allow some slop. C = MathUtils.clamp(C - Settings.angularSlop, 0.0f, Settings.maxAngularCorrection); limitImpulse = -m_motorMass * C; } aA -= m_invIA * limitImpulse; aB += m_invIB * limitImpulse; } // Solve point-to-point constraint. { qA.set(aA); qB.set(aB); final Vec2 rA = pool.popVec2(); final Vec2 rB = pool.popVec2(); final Vec2 C = pool.popVec2(); final Vec2 impulse = pool.popVec2(); Rot.mulToOutUnsafe(qA, C.set(m_localAnchorA).subLocal(m_localCenterA), rA); Rot.mulToOutUnsafe(qB, C.set(m_localAnchorB).subLocal(m_localCenterB), rB); C.set(cB).addLocal(rB).subLocal(cA).subLocal(rA); positionError = C.length(); float mA = m_invMassA, mB = m_invMassB; float iA = m_invIA, iB = m_invIB; final Mat22 K = pool.popMat22(); K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; K.ey.x = K.ex.y; K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; K.solveToOut(C, impulse); impulse.negateLocal(); cA.x -= mA * impulse.x; cA.y -= mA * impulse.y; aA -= iA * Vec2.cross(rA, impulse); cB.x += mB * impulse.x; cB.y += mB * impulse.y; aB += iB * Vec2.cross(rB, impulse); pool.pushVec2(4); pool.pushMat22(1); } // data.positions[m_indexA].c.set(cA); data.positions[m_indexA].a = aA; // data.positions[m_indexB].c.set(cB); data.positions[m_indexB].a = aB; pool.pushRot(2); return positionError <= Settings.linearSlop && angularError <= Settings.angularSlop; } public Vec2 getLocalAnchorA() { return m_localAnchorA; } public Vec2 getLocalAnchorB() { return m_localAnchorB; } public float getReferenceAngle() { return m_referenceAngle; } @Override public void getAnchorA(Vec2 argOut) { m_bodyA.getWorldPointToOut(m_localAnchorA, argOut); } @Override public void getAnchorB(Vec2 argOut) { m_bodyB.getWorldPointToOut(m_localAnchorB, argOut); } @Override public void getReactionForce(float inv_dt, Vec2 argOut) { argOut.set(m_impulse.x, m_impulse.y).mulLocal(inv_dt); } @Override public float getReactionTorque(float inv_dt) { return inv_dt * m_impulse.z; } public float getJointAngle() { final Body b1 = m_bodyA; final Body b2 = m_bodyB; return b2.m_sweep.a - b1.m_sweep.a - m_referenceAngle; } public float getJointSpeed() { final Body b1 = m_bodyA; final Body b2 = m_bodyB; return b2.m_angularVelocity - b1.m_angularVelocity; } public boolean isMotorEnabled() { return m_enableMotor; } public void enableMotor(boolean flag) { m_bodyA.setAwake(true); m_bodyB.setAwake(true); m_enableMotor = flag; } public float getMotorTorque(float inv_dt) { return m_motorImpulse * inv_dt; } public void setMotorSpeed(final float speed) { m_bodyA.setAwake(true); m_bodyB.setAwake(true); m_motorSpeed = speed; } public void setMaxMotorTorque(final float torque) { m_bodyA.setAwake(true); m_bodyB.setAwake(true); m_maxMotorTorque = torque; } public float getMotorSpeed() { return m_motorSpeed; } public float getMaxMotorTorque() { return m_maxMotorTorque; } public boolean isLimitEnabled() { return m_enableLimit; } public void enableLimit(final boolean flag) { if (flag != m_enableLimit) { m_bodyA.setAwake(true); m_bodyB.setAwake(true); m_enableLimit = flag; m_impulse.z = 0.0f; } } public float getLowerLimit() { return m_lowerAngle; } public float getUpperLimit() { return m_upperAngle; } public void setLimits(final float lower, final float upper) { assert (lower <= upper); if (lower != m_lowerAngle || upper != m_upperAngle) { m_bodyA.setAwake(true); m_bodyB.setAwake(true); m_impulse.z = 0.0f; m_lowerAngle = lower; m_upperAngle = upper; } } }