/******************************************************************************* * Copyright (c) 2013, Daniel Murphy * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ package org.jbox2d.collision; import org.jbox2d.common.MathUtils; import org.jbox2d.common.Rot; import org.jbox2d.common.Settings; import org.jbox2d.common.Transform; import org.jbox2d.common.Vec2; /** * This is used to compute the current state of a contact manifold. * * @author daniel */ public class WorldManifold { /** * World vector pointing from A to B */ public final Vec2 normal; /** * World contact point (point of intersection) */ public final Vec2[] points; /** * A negative value indicates overlap, in meters. */ public final float[] separations; public WorldManifold() { normal = new Vec2(); points = new Vec2[Settings.maxManifoldPoints]; separations = new float[Settings.maxManifoldPoints]; for (int i = 0; i < Settings.maxManifoldPoints; i++) { points[i] = new Vec2(); } } private final Vec2 pool3 = new Vec2(); private final Vec2 pool4 = new Vec2(); public final void initialize(final Manifold manifold, final Transform xfA, float radiusA, final Transform xfB, float radiusB) { if (manifold.pointCount == 0) { return; } switch (manifold.type) { case CIRCLES: { final Vec2 pointA = pool3; final Vec2 pointB = pool4; normal.x = 1; normal.y = 0; Vec2 v = manifold.localPoint; // Transform.mulToOutUnsafe(xfA, manifold.localPoint, pointA); // Transform.mulToOutUnsafe(xfB, manifold.points[0].localPoint, pointB); pointA.x = (xfA.q.c * v.x - xfA.q.s * v.y) + xfA.p.x; pointA.y = (xfA.q.s * v.x + xfA.q.c * v.y) + xfA.p.y; Vec2 mp0p = manifold.points[0].localPoint; pointB.x = (xfB.q.c * mp0p.x - xfB.q.s * mp0p.y) + xfB.p.x; pointB.y = (xfB.q.s * mp0p.x + xfB.q.c * mp0p.y) + xfB.p.y; if (MathUtils.distanceSquared(pointA, pointB) > Settings.EPSILON * Settings.EPSILON) { normal.x = pointB.x - pointA.x; normal.y = pointB.y - pointA.y; normal.normalize(); } final float cAx = normal.x * radiusA + pointA.x; final float cAy = normal.y * radiusA + pointA.y; final float cBx = -normal.x * radiusB + pointB.x; final float cBy = -normal.y * radiusB + pointB.y; points[0].x = (cAx + cBx) * .5f; points[0].y = (cAy + cBy) * .5f; separations[0] = (cBx - cAx) * normal.x + (cBy - cAy) * normal.y; } break; case FACE_A: { final Vec2 planePoint = pool3; Rot.mulToOutUnsafe(xfA.q, manifold.localNormal, normal); Transform.mulToOut(xfA, manifold.localPoint, planePoint); final Vec2 clipPoint = pool4; for (int i = 0; i < manifold.pointCount; i++) { // b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint); // b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, // normal)) * normal; // b2Vec2 cB = clipPoint - radiusB * normal; // points[i] = 0.5f * (cA + cB); Transform.mulToOut(xfB, manifold.points[i].localPoint, clipPoint); // use cA as temporary for now // cA.set(clipPoint).subLocal(planePoint); // float scalar = radiusA - Vec2.dot(cA, normal); // cA.set(normal).mulLocal(scalar).addLocal(clipPoint); // cB.set(normal).mulLocal(radiusB).subLocal(clipPoint).negateLocal(); // points[i].set(cA).addLocal(cB).mulLocal(0.5f); final float scalar = radiusA - ((clipPoint.x - planePoint.x) * normal.x + (clipPoint.y - planePoint.y) * normal.y); final float cAx = normal.x * scalar + clipPoint.x; final float cAy = normal.y * scalar + clipPoint.y; final float cBx = -normal.x * radiusB + clipPoint.x; final float cBy = -normal.y * radiusB + clipPoint.y; points[i].x = (cAx + cBx) * .5f; points[i].y = (cAy + cBy) * .5f; separations[i] = (cBx - cAx) * normal.x + (cBy - cAy) * normal.y; } } break; case FACE_B: final Vec2 planePoint = pool3; Rot.mulToOutUnsafe(xfB.q, manifold.localNormal, normal); Transform.mulToOut(xfB, manifold.localPoint, planePoint); // final Mat22 R = xfB.q; // normal.x = R.ex.x * manifold.localNormal.x + R.ey.x * manifold.localNormal.y; // normal.y = R.ex.y * manifold.localNormal.x + R.ey.y * manifold.localNormal.y; // final Vec2 v = manifold.localPoint; // planePoint.x = xfB.p.x + xfB.q.ex.x * v.x + xfB.q.ey.x * v.y; // planePoint.y = xfB.p.y + xfB.q.ex.y * v.x + xfB.q.ey.y * v.y; final Vec2 clipPoint = pool4; for (int i = 0; i < manifold.pointCount; i++) { // b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint); // b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint, // normal)) * normal; // b2Vec2 cA = clipPoint - radiusA * normal; // points[i] = 0.5f * (cA + cB); Transform.mulToOut(xfA, manifold.points[i].localPoint, clipPoint); // cB.set(clipPoint).subLocal(planePoint); // float scalar = radiusB - Vec2.dot(cB, normal); // cB.set(normal).mulLocal(scalar).addLocal(clipPoint); // cA.set(normal).mulLocal(radiusA).subLocal(clipPoint).negateLocal(); // points[i].set(cA).addLocal(cB).mulLocal(0.5f); // points[i] = 0.5f * (cA + cB); // // clipPoint.x = xfA.p.x + xfA.q.ex.x * manifold.points[i].localPoint.x + xfA.q.ey.x * // manifold.points[i].localPoint.y; // clipPoint.y = xfA.p.y + xfA.q.ex.y * manifold.points[i].localPoint.x + xfA.q.ey.y * // manifold.points[i].localPoint.y; final float scalar = radiusB - ((clipPoint.x - planePoint.x) * normal.x + (clipPoint.y - planePoint.y) * normal.y); final float cBx = normal.x * scalar + clipPoint.x; final float cBy = normal.y * scalar + clipPoint.y; final float cAx = -normal.x * radiusA + clipPoint.x; final float cAy = -normal.y * radiusA + clipPoint.y; points[i].x = (cAx + cBx) * .5f; points[i].y = (cAy + cBy) * .5f; separations[i] = (cAx - cBx) * normal.x + (cAy - cBy) * normal.y; } // Ensure normal points from A to B. normal.x = -normal.x; normal.y = -normal.y; break; } } }