/******************************************************************************* * Copyright (c) 2013, Daniel Murphy * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. ******************************************************************************/ package org.jbox2d.collision.shapes; import org.jbox2d.collision.AABB; import org.jbox2d.collision.RayCastInput; import org.jbox2d.collision.RayCastOutput; import org.jbox2d.common.MathUtils; import org.jbox2d.common.Rot; import org.jbox2d.common.Settings; import org.jbox2d.common.Transform; import org.jbox2d.common.Vec2; /** * A circle shape. */ public class CircleShape extends Shape { public final Vec2 m_p; public CircleShape() { super(ShapeType.CIRCLE); m_p = new Vec2(); m_radius = 0; } public final Shape clone() { CircleShape shape = new CircleShape(); shape.m_p.x = m_p.x; shape.m_p.y = m_p.y; shape.m_radius = m_radius; return shape; } public final int getChildCount() { return 1; } /** * Get the supporting vertex index in the given direction. * * @param d * @return */ public final int getSupport(final Vec2 d) { return 0; } /** * Get the supporting vertex in the given direction. * * @param d * @return */ public final Vec2 getSupportVertex(final Vec2 d) { return m_p; } /** * Get the vertex count. * * @return */ public final int getVertexCount() { return 1; } /** * Get a vertex by index. * * @param index * @return */ public final Vec2 getVertex(final int index) { assert (index == 0); return m_p; } @Override public final boolean testPoint(final Transform transform, final Vec2 p) { // Rot.mulToOutUnsafe(transform.q, m_p, center); // center.addLocal(transform.p); // // final Vec2 d = center.subLocal(p).negateLocal(); // return Vec2.dot(d, d) <= m_radius * m_radius; final Rot q = transform.q; final Vec2 tp = transform.p; float centerx = -(q.c * m_p.x - q.s * m_p.y + tp.x - p.x); float centery = -(q.s * m_p.x + q.c * m_p.y + tp.y - p.y); return centerx * centerx + centery * centery <= m_radius * m_radius; } @Override public float computeDistanceToOut(Transform xf, Vec2 p, int childIndex, Vec2 normalOut) { final Rot xfq = xf.q; float centerx = xfq.c * m_p.x - xfq.s * m_p.y + xf.p.x; float centery = xfq.s * m_p.x + xfq.c * m_p.y + xf.p.y; float dx = p.x - centerx; float dy = p.y - centery; float d1 = MathUtils.sqrt(dx * dx + dy * dy); normalOut.x = dx * 1 / d1; normalOut.y = dy * 1 / d1; return d1 - m_radius; } // Collision Detection in Interactive 3D Environments by Gino van den Bergen // From Section 3.1.2 // x = s + a * r // norm(x) = radius @Override public final boolean raycast(RayCastOutput output, RayCastInput input, Transform transform, int childIndex) { final Vec2 inputp1 = input.p1; final Vec2 inputp2 = input.p2; final Rot tq = transform.q; final Vec2 tp = transform.p; // Rot.mulToOutUnsafe(transform.q, m_p, position); // position.addLocal(transform.p); final float positionx = tq.c * m_p.x - tq.s * m_p.y + tp.x; final float positiony = tq.s * m_p.x + tq.c * m_p.y + tp.y; final float sx = inputp1.x - positionx; final float sy = inputp1.y - positiony; // final float b = Vec2.dot(s, s) - m_radius * m_radius; final float b = sx * sx + sy * sy - m_radius * m_radius; // Solve quadratic equation. final float rx = inputp2.x - inputp1.x; final float ry = inputp2.y - inputp1.y; // final float c = Vec2.dot(s, r); // final float rr = Vec2.dot(r, r); final float c = sx * rx + sy * ry; final float rr = rx * rx + ry * ry; final float sigma = c * c - rr * b; // Check for negative discriminant and short segment. if (sigma < 0.0f || rr < Settings.EPSILON) { return false; } // Find the point of intersection of the line with the circle. float a = -(c + MathUtils.sqrt(sigma)); // Is the intersection point on the segment? if (0.0f <= a && a <= input.maxFraction * rr) { a /= rr; output.fraction = a; output.normal.x = rx * a + sx; output.normal.y = ry * a + sy; output.normal.normalize(); return true; } return false; } @Override public final void computeAABB(final AABB aabb, final Transform transform, int childIndex) { final Rot tq = transform.q; final Vec2 tp = transform.p; final float px = tq.c * m_p.x - tq.s * m_p.y + tp.x; final float py = tq.s * m_p.x + tq.c * m_p.y + tp.y; aabb.lowerBound.x = px - m_radius; aabb.lowerBound.y = py - m_radius; aabb.upperBound.x = px + m_radius; aabb.upperBound.y = py + m_radius; } @Override public final void computeMass(final MassData massData, final float density) { massData.mass = density * Settings.PI * m_radius * m_radius; massData.center.x = m_p.x; massData.center.y = m_p.y; // inertia about the local origin // massData.I = massData.mass * (0.5f * m_radius * m_radius + Vec2.dot(m_p, m_p)); massData.I = massData.mass * (0.5f * m_radius * m_radius + (m_p.x * m_p.x + m_p.y * m_p.y)); } }