/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.MODENAR; import java.io.IOException; import keel.Dataset.*; public class myDataset { public static final int NOMINAL = 0; public static final int INTEGER = 1; public static final int REAL = 2; private double[][] realTransactions = null; //transactions array private boolean[][] missing = null; //possible missing values private int[] type = null; //possible missing values private double[] emax; //max value of an attribute private double[] emin; //min value of an attribute private int nTrans; // Number of transactions private int nInputs; // Number of inputs private int nOutputs; // Number of outputs private int nVars; // Number of variables private InstanceSet IS; //The whole instance set /** * Init a new set of instances */ public myDataset() { IS = new InstanceSet(); } /** * Outputs an array of transactions with their corresponding attribute values. * @return double[][] an array of transactions with their corresponding attribute values */ public double[][] getRealTransactions() { return realTransactions; } /** * It returns an array with the maximum values of the attributes * @return double[] an array with the maximum values of the attributes */ public double[] getemax() { return emax; } /** * It returns an array with the minimum values of the attributes * @return double[] an array with the minimum values of the attributes */ public double[] getemin() { return emin; } /** * It returns the upper bound of the variable * @param variable Id otf the attribute * @return double the upper bound of the variable */ public double getMax(int variable) { return emax[variable]; } /** * It returns the lower bound of the variable * @param variable Id of the attribute * @return double the lower bound of the variable */ public double getMin(int variable) { return emin[variable]; } /** * It gets the size of the data-set * @return int the number of transactions in the data-set */ public int getnTrans() { return nTrans; } /** * It gets the number of variables of the data-set * @return int the number of variables of the data-set */ public int getnVars() { return nVars; } /** * This function checks if the attribute value is missing * @param i int Example id * @param j int Variable id * @return boolean True is the value is missing, else it returns false */ public boolean isMissing(int i, int j) { return missing[i][j]; } /** * This function checks if the attribute value is missing * @param i int Example id * @param j int Variable id * @return boolean True is the value is missing, else it returns false */ public boolean isNominal(int i) { if (type[i] != myDataset.NOMINAL) return (false); else return (true); } /** * It reads the whole input data-set and it stores each transaction in * local array * @param datasetFile String name of the file containing the data-set * @throws IOException If there occurs any problem with the reading of the data-set */ public void readDataSet(String datasetFile) throws IOException { int i, j, k; try { // Load in memory a data-set that contains a Frequent Items Mining problem IS.readSet(datasetFile, true); this.nTrans = IS.getNumInstances(); this.nInputs = Attributes.getInputNumAttributes(); this.nOutputs = Attributes.getOutputNumAttributes(); this.nVars = this.nInputs + this.nOutputs; // Initialize and fill our own tables realTransactions = new double[nTrans][nVars]; missing = new boolean[nTrans][nVars]; type = new int[nVars]; // Maximum and minimum of inputs emax = new double[nVars]; emin = new double[nVars]; for (i = 0; i < nVars; i++) { type[i] = Attributes.getAttribute(i).getType(); if (type[i] != myDataset.NOMINAL ) { emax[i] = Attributes.getAttribute(i).getMaxAttribute(); emin[i] = Attributes.getAttribute(i).getMinAttribute(); } else { emin[i] = 0; emax[i] = Attributes.getAttribute(i).getNumNominalValues() - 1; } } // All values are casted into double/integer for (i=0; i < nTrans; i++) { Instance inst = IS.getInstance(i); for (j=0; j < nInputs; j++) { realTransactions[i][j] = IS.getInputNumericValue(i, j); missing[i][j] = inst.getInputMissingValues(j); if (missing[i][j]) realTransactions[i][j] = emin[j] - 1; } if (this.nOutputs > 0) { for (k=0; k < this.nOutputs; k++, j++) { realTransactions[i][j] = IS.getOutputNumericValue(i, k); /*missing[i][j] = inst.getInputMissingValues(j); if (missing[i][j]) realTransactions[i][j] = emin[j] - 1;*/ } } } } catch (Exception e) { System.out.println("DBG: Exception in readSet"); e.printStackTrace(); } } /** * Devuelve el universo de discuros de las variables de entrada y salida * @return double[][] El rango minimo y maximo de cada variable */ public double [][] getRanks() { int i, j; double [][] ranks = new double[this.getnVars()][2]; for (i = 0; i < this.nInputs; i++){ if (Attributes.getInputAttribute(i).getNumNominalValues() > 0){ ranks[i][0] = 0; ranks[i][1] = Attributes.getInputAttribute(i).getNumNominalValues()-1; }else{ ranks[i][0] = Attributes.getInputAttribute(i).getMinAttribute(); ranks[i][1] = Attributes.getInputAttribute(i).getMaxAttribute(); } } for (j = 0; j < this.nOutputs; j++, i++){ if (Attributes.getOutputAttribute(j).getNumNominalValues() > 0){ ranks[i][0] = 0; ranks[i][1] = Attributes.getOutputAttribute(j).getNumNominalValues()-1; }else{ ranks[i][0] = Attributes.getOutputAttribute(j).getMinAttribute(); ranks[i][1] = Attributes.getOutputAttribute(j).getMaxAttribute(); } } return ranks; } /** * It checks if the data-set has any real value * @return boolean True if it has some real values, else false. */ public boolean hasRealAttributes() { return Attributes.hasRealAttributes(); } /** * It checks if the data-set has any numerical value (real or integer) * @return boolean True if it has some numerical values, else false. */ public boolean hasNumericalAttributes() { return (Attributes.hasIntegerAttributes() || Attributes.hasRealAttributes()); } /** * It checks if the data-set has any missing value * @return boolean True if it has some missing values, else false. */ public boolean hasMissingAttributes() { return (this.sizeWithoutMissing() < this.getnTrans()); } /** * It return the size of the data-set without having account the missing values * @return int the size of the data-set without having account the missing values */ public int sizeWithoutMissing() { int tam = 0; for (int i = 0; i < nTrans; i++) { int j; for (j = 1; (j < nVars) && (!isMissing(i, j)); j++) { ; } if (j == nVars) { tam++; } } return tam; } /** * It returns the number of different values in the case of a nominal variable * @param attribute Id of the variable * @return the number of different values in the case of a nominal variable */ public int numberValues(int attribute) { return Attributes.getInputAttribute(attribute).getNumNominalValues(); } /** * It returns an array indicating the position of the missing values on a specific example * @param pos int Id of the example * @return boolean[] an array indicating the position of the missing values on the example */ public boolean [] getMissing(int pos){ return this.missing[pos]; } /** * It returns the names of the variables * @return String[] an array with the names of the variables */ public String[] names() { String nombres[] = new String[nVars]; for (int i = 0; i < nVars; i++) { nombres[i] = Attributes.getInputAttribute(i).getName(); } return nombres; } /** * It returns the name of the variable in "pos" * @param pos int Id of the variable * @return String the name of the attribute */ public String getNameVar(int pos) { return Attributes.getInputAttribute(pos).getName(); } /** * It returns the type of the attribute in "n_attr" * @param n_attr int Id of the attribute * @return int the type of the attribute */ public int getAttributeType(int n_attr) { if (Attributes.getAttribute(n_attr).getType() == Attributes.getAttribute(0).INTEGER) return this.INTEGER; if (Attributes.getAttribute(n_attr).getType() == Attributes.getAttribute(0).REAL) return this.REAL; if (Attributes.getAttribute(n_attr).getType() == Attributes.getAttribute(0).NOMINAL) return this.NOMINAL; return (-1); } }