/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth; /** * <p> * @author Written by Alberto Fern�ndez (University of Granada) * @author Modified by Nicol� Flugy Pap� (Politecnico di Milano) 24/03/2009 * @version 1.1 * @since JDK1.6 * </p> */ import java.io.FileNotFoundException; import java.io.IOException; import java.io.PrintWriter; import java.util.ArrayList; public class FPgrowth { /** * <p> * It gathers all the parameters, launches the algorithm, and prints out the results * </p> */ private myDataset trans; private String rulesFilename; private String valuesFilename; private FPgrowthProcess proc; private ArrayList<AssociationRule> associationRules; private int nPartitionForNumericAttributes; private double minSupport; private double minConfidence; private boolean somethingWrong = false; //to check if everything is correct. /** * Default constructor */ public FPgrowth() { } /** * It reads the data from the input files and parse all the parameters * from the parameters array. * @param parameters parseParameters It contains the input files, output files and parameters */ public FPgrowth(parseParameters parameters) { this.rulesFilename = parameters.getAssociationRulesFile(); this.valuesFilename = parameters.getOutputFile(0); this.nPartitionForNumericAttributes = Integer.parseInt(parameters.getParameter(0)); try { System.out.println("\nReading the transaction set: " + parameters.getTransactionsInputFile()); this.trans = new myDataset(this.nPartitionForNumericAttributes); this.trans.readDataSet(parameters.getTransactionsInputFile()); } catch (IOException e) { System.err.println("There was a problem while reading the input transaction set: " + e); somethingWrong = true; } this.minSupport = Double.parseDouble(parameters.getParameter(1)); this.minConfidence = Double.parseDouble(parameters.getParameter(2)); } /** * It launches the algorithm */ public void execute() { if (somethingWrong) { //We do not execute the program System.err.println("An error was found"); System.err.println("Aborting the program"); //We should not use the statement: System.exit(-1); } else { this.proc = new FPgrowthProcess(this.trans, this.minSupport, this.minConfidence); this.proc.run(); this.associationRules = this.proc.generateRulesSet(); this.proc.printReport(this.associationRules); /*for (int i=0; i < this.associationRules.size(); i++) { System.out.println(this.associationRules.get(i)); }*/ try { int r, i; short[] terms; AssociationRule a_r; double[] step_values = this.trans.getSteps(); ArrayList<Integer> id_attr_values = this.trans.getIDsOfAllAttributeValues(); PrintWriter rules_writer = new PrintWriter(this.rulesFilename); PrintWriter values_writer = new PrintWriter(this.valuesFilename); rules_writer.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"); rules_writer.println("<rules>"); values_writer.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"); values_writer.println("<values>"); for (r=0; r < this.associationRules.size(); r++) { a_r = this.associationRules.get(r); rules_writer.println("<rule id=\"" + r + "\">"); values_writer.println("<rule id=\"" + r + "\" rule_support=\"" + a_r.getRuleSupport() + "\" antecedent_support=\"" + a_r.getAntecedentSupport() + "\" confidence=\"" + a_r.getConfidence() + "\"/>"); rules_writer.println("<antecedents>"); terms = a_r.getAntecedent(); for (i=0; i < terms.length; i++) this.createRule(id_attr_values.get(terms[i] - 1), step_values, rules_writer); rules_writer.println("</antecedents>"); rules_writer.println("<consequents>"); terms = a_r.getConsequent(); for (i=0; i < terms.length; i++) this.createRule(id_attr_values.get(terms[i] - 1), step_values, rules_writer); rules_writer.println("</consequents>"); rules_writer.println("</rule>"); } rules_writer.println("</rules>"); values_writer.println("</values>"); rules_writer.close(); values_writer.close(); System.out.println("\nAlgorithm Finished"); } catch (FileNotFoundException e) { e.printStackTrace(); } } } private void createRule(int fake_value, double[] step_values, PrintWriter w) { int id_attr, true_value; id_attr = fake_value % trans.getnVars(); true_value = (fake_value - id_attr) / trans.getnVars(); w.print("<attribute name=\"" + trans.getAttributeName(id_attr) + "\" value=\""); if (trans.getAttributeType(id_attr) == myDataset.NOMINAL) w.print( trans.getNominalValue(id_attr, true_value) ); else w.print("[" + (this.trans.getMin(id_attr) + step_values[id_attr] * true_value) + ", " + (this.trans.getMin(id_attr) + step_values[id_attr] * (true_value + 1)) + "]"); w.println("\"/>"); } }