/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.RE_SL_Methods.LEL_TSK;
import org.core.*;
import java.lang.Math;
class AG_Tun {
public double prob_cruce, prob_mutacion, a, b;
public int Mu_next, Trials;
public double Best_current_perf, porc_pob_ee;
public int Best_guy;
public int long_poblacion, n_genes, primer_gen_C2;
public int n_gen_ee;
public static double S_sigma_consecuentes = 0.00001;
public static double c = 0.9; /*0.817*/
public int[] sample;
public int[] indices_ordenacion;
public int last;
public Structure[] Old;
public Structure[] New;
public Structure[] C;
public Structure[] temp;
public Structure[] YaExplotados;
public Structure Hijo;
public TipoIntervalo[] intervalos;
private TipoIntervalo intervalo_mut;
private MiDataset tabla;
private double PI = 3.1415926;
public Adap_Tun fun_adap;
public BaseR_TSK base_reglas;
public AG_Tun(int n_poblacion, double cruce, double mutacion, double valor_a,
double valor_b, double porc_pob_ee11, int gen_ee, Adap_Tun funcion,
BaseR_TSK base, MiDataset tabla) {
int i;
this.base_reglas = base;
this.fun_adap = funcion;
this.tabla = tabla;
this.long_poblacion = n_poblacion;
this.prob_cruce = cruce;
this.prob_mutacion = mutacion;
this.a = valor_a;
this.b = valor_b;
this.porc_pob_ee = porc_pob_ee11;
this.n_gen_ee = gen_ee;
this.n_genes = (3 * this.tabla.n_var_estado + this.tabla.n_variables) * this.base_reglas.n_reglas;
this.prob_mutacion = this.prob_mutacion / (double) this.n_genes;
this.last = (int) (this.long_poblacion * this.prob_cruce);
this.Old = new Structure[this.long_poblacion];
this.New = new Structure[this.long_poblacion];
this.YaExplotados = new Structure[this.long_poblacion];
for (i = 0; i < this.long_poblacion; i++) {
this.Old[i] = new Structure(this.n_genes);
this.New[i] = new Structure(this.n_genes);
this.YaExplotados[i] = new Structure(this.n_genes);
}
this.Hijo = new Structure(this.n_genes);
this.sample = new int[this.long_poblacion];
this.indices_ordenacion = new int[this.long_poblacion];
this.intervalo_mut = new TipoIntervalo();
this.intervalos = new TipoIntervalo[this.n_genes];
for (i = 0; i < this.n_genes; i++) {
this.intervalos[i] = new TipoIntervalo();
}
this.C = new Structure[4];
for (i = 0; i < 4; i++) {
this.C[i] = new Structure(this.n_genes);
}
}
public void Intercambio() {
temp = Old;
Old = New;
New = temp;
}
/** Inicialization of the population */
public void Initialize() {
int i, j, temp, mitad_Pob;
double Valor_Inicial_Sigma = 0.001;
if (prob_mutacion < 1.0) {
Mu_next = (int) Math.ceil(Math.log(Randomize.Rand()) / Math.log(1.0 - prob_mutacion));
}
else {
Mu_next = 1;
}
Trials = 0;
/* Los conjuntos difusos de los antecedentes de las reglas constituyen la
primera parte del primer cromosoma de la poblacion inicial.
Se inicializa C1 en el primer cromosoma. */
New[0].n_e = 1;
primer_gen_C2 = 0;
for (i = 0; i < base_reglas.n_reglas; i++) {
for (j = 0; j < tabla.n_var_estado; j++) {
New[0].Gene[primer_gen_C2] = base_reglas.BaseReglas[i].Ant[j].x0;
New[0].Gene[primer_gen_C2 + 1] = base_reglas.BaseReglas[i].Ant[j].x1;
New[0].Gene[primer_gen_C2 + 2] = base_reglas.BaseReglas[i].Ant[j].x3;
primer_gen_C2 += 3;
}
}
/* Se establecen los intervalos en los que varia cada gen de la primera
parte en la primera generacion */
for (i = 0; i < primer_gen_C2; i += 3) {
intervalos[i].min = New[0].Gene[i] - (New[0].Gene[i + 1] - New[0].Gene[i]) / 2.0;
intervalos[i].max = New[0].Gene[i] + (New[0].Gene[i + 1] - New[0].Gene[i]) / 2.0;
intervalos[i + 1].min = New[0].Gene[i + 1] - (New[0].Gene[i + 1] - New[0].Gene[i]) / 2.0;
intervalos[i + 1].max = New[0].Gene[i + 1] + (New[0].Gene[i + 2] - New[0].Gene[i + 1]) / 2.0;
intervalos[i + 2].min = New[0].Gene[i + 2] - (New[0].Gene[i + 2] - New[0].Gene[i + 1]) / 2.0;
intervalos[i + 2].max = New[0].Gene[i + 2] + (New[0].Gene[i + 2] - New[0].Gene[i + 1]) / 2.0;
}
/* Se inicializa la segunda parte del primer cromosoma con los parametros
de los consecuentes de las reglas de la BC inicial, junto con los inter-
valos correspondientes */
for (i = 0; i < base_reglas.n_reglas; i++) {
for (j = 0; j < tabla.n_variables; j++) {
temp = primer_gen_C2 + i * (tabla.n_variables) + j;
New[0].Gene[temp] = Math.atan(base_reglas.BaseReglas[i].Cons[j]);
intervalos[temp].min = (-1.0 * PI / 2.0) + 1E-10;
intervalos[temp].max = (PI / 2.0) - 1E-10;
}
}
/* Se genera la segunda mitad de la poblacion inicial generando aleatoriamen-
te C1 y manteniendo C2 */
mitad_Pob = (int) Math.ceil(long_poblacion / 2.0);
for (i = 1; i < mitad_Pob; i++) {
for (j = 0; j < primer_gen_C2; j++) {
New[i].Gene[j] = intervalos[j].min + Randomize.Randdouble(intervalos[j].min, intervalos[j].max);
}
for (j = primer_gen_C2; j < n_genes; j++) {
New[i].Gene[j] = New[0].Gene[j];
}
New[i].n_e = 1;
}
/* Se genera el resto de la poblacion inicial generando aleatoriamente C1
a partir de los intervalos anteriores y mutando C2 */
for (i = mitad_Pob; i < long_poblacion; i++) {
for (j = 0; j < primer_gen_C2; j++) {
New[i].Gene[j] = intervalos[j].min + Randomize.Randdouble(intervalos[j].min, intervalos[j].max);
}
for (j = primer_gen_C2; j < n_genes; j++) {
/* Comprobamos que no se salgan del intervalo permitido [-PI/2,PI/2] */
do {
New[i].Gene[j] = New[0].Gene[j] + ValorNormal(Valor_Inicial_Sigma);
}
while (New[i].Gene[j] <= (-1.0 * PI / 2.0) || New[i].Gene[j] >= (PI / 2.0));
}
New[i].n_e = 1;
}
}
/* Selection based on the Baker's Estocastic Universal Sampling */
void Select() {
double expected, factor, perf, ptr, sum, rank_max, rank_min;
int i, j, k, best, temp;
rank_min = 0.75;
/* we assign the ranking to each element:
The best: ranking = long_poblacion-1
The worse: ranking = 0 */
for (i = 0; i < long_poblacion; i++) {
Old[i].n_e = 0;
}
/* we look for the best ordered non element */
for (i = 0; i < long_poblacion - 1; i++) {
best = -1;
perf = 0.0;
for (j = 0; j < long_poblacion; j++) {
if ( (Old[j].n_e == 0) && (best == -1 || Old[j].Perf < perf)) {
perf = Old[j].Perf;
best = j;
}
}
/* we assign the ranking */
Old[best].n_e = long_poblacion - 1 - i;
}
/* we normalize the ranking */
rank_max = 2.0 - rank_min;
factor = (rank_max - rank_min) / (double) (long_poblacion - 1);
/* we assign the number of replicas of each chormosome according to the select probability */
k = 0;
ptr = Randomize.Rand();
for (sum = i = 0; i < long_poblacion; i++) {
expected = rank_min + Old[i].n_e * factor;
for (sum += expected; sum >= ptr; ptr++) {
sample[k++] = i;
}
}
/* we complete the population if necessary */
if (k != long_poblacion) {
for (; k < long_poblacion; k++) {
sample[k] = Randomize.RandintClosed(0, long_poblacion - 1);
}
}
/* we shuffle the selected chromosomes */
for (i = 0; i < long_poblacion; i++) {
j = Randomize.RandintClosed(i, long_poblacion - 1);
temp = sample[j];
sample[j] = sample[i];
sample[i] = temp;
}
/* we create the new population */
for (i = 0; i < long_poblacion; i++) {
k = sample[i];
for (j = 0; j < n_genes; j++) {
New[i].Gene[j] = Old[k].Gene[j];
}
New[i].Perf = Old[k].Perf;
New[i].n_e = 0;
}
}
private double T_producto_logico(double x, double y) {
if (x < y) {
return (x);
}
else {
return (y);
}
}
private double S_suma_logica(double x, double y) {
if (x > y) {
return (x);
}
else {
return (y);
}
}
private double Promedio1(double x, double y, double p) {
return (p * x + (1 - p) * y);
}
/** Max-Min-Aritmetical Crossover */
public void Max_Min_Crossover() {
int mom, dad, i, j, temp;
int[] indice = new int[4];
for (mom = 0; mom < last; mom += 2) {
dad = mom + 1;
for (i = 0; i < n_genes; i++) {
/* we obtain 4 offsprings: appling the t-norma, the
t-conorma and 2 the average function */
C[0].Gene[i] = T_producto_logico(New[mom].Gene[i], New[dad].Gene[i]);
C[1].Gene[i] = S_suma_logica(New[mom].Gene[i], New[dad].Gene[i]);
C[2].Gene[i] = Promedio1(New[mom].Gene[i], New[dad].Gene[i], a);
C[3].Gene[i] = Promedio1(New[mom].Gene[i], New[dad].Gene[i], 1.0 - a);
}
/* Evaluation of the 4 offsprings */
C[0].Perf = fun_adap.eval(C[0].Gene);
C[1].Perf = fun_adap.eval(C[1].Gene);
C[2].Perf = fun_adap.eval(C[2].Gene);
C[3].Perf = fun_adap.eval(C[3].Gene);
/* we order the offsprings by means of the bubble method */
for (i = 0; i < 4; i++) {
indice[i] = i;
}
for (i = 0; i < 4; i++) {
for (j = 0; j < 3 - i; j++) {
if (C[indice[j + 1]].Perf < C[indice[j]].Perf) {
temp = indice[j];
indice[j] = indice[j + 1];
indice[j + 1] = temp;
}
}
}
for (i = 0; i < n_genes; i++) {
New[mom].Gene[i] = C[indice[0]].Gene[i];
New[dad].Gene[i] = C[indice[1]].Gene[i];
}
/* we update the fitness of the offsprings */
New[mom].Perf = C[indice[0]].Perf;
New[dad].Perf = C[indice[1]].Perf;
New[mom].n_e = 0;
New[dad].n_e = 0;
Trials += 2;
}
}
private double delta(long t, double y, long n_generaciones) {
double r, potencia, subtotal, sub;
r = Randomize.Rand();
sub = 1.0 - (double) t / (double) n_generaciones;
potencia = Math.pow(sub, (double) b);
subtotal = Math.pow(r, potencia);
return (y * (1.0 - subtotal));
}
/** Mutation Non Uniform */
public void Mutacion_No_Uniforme(long Gen, long n_generaciones) {
int posiciones, i, j;
double nval, m;
posiciones = n_genes * long_poblacion;
if (prob_mutacion > 0) {
while (Mu_next < posiciones) {
/* we determinate the chromosome and the gene */
i = Mu_next / n_genes;
j = Mu_next % n_genes;
/* Se determinan los intervalos de mutacion de ese gen y se calcula el
valor mutado */
if (j >= primer_gen_C2) { /* Consecuente: muta en [-PI/2,PI/2] */
intervalo_mut.min = intervalos[j].min;
intervalo_mut.max = intervalos[j].max;
}
else {
switch (j % 3) {
case 0:
/* Punto izquierdo: muta en [intervalos[j].min,cromosoma[j+1]] */
intervalo_mut.min = intervalos[j].min;
intervalo_mut.max = New[i].Gene[j + 1];
break;
case 1:
/* Punto central: muta en [cromosoma[j-1],cromosoma[j+1]] */
intervalo_mut.min = New[i].Gene[j - 1];
intervalo_mut.max = New[i].Gene[j + 1];
break;
case 2:
/* Punto derecho: muta en [cromosoma[j-1],intervalos[j].max] */
intervalo_mut.min = New[i].Gene[j - 1];
intervalo_mut.max = intervalos[j].max;
break;
}
}
/* we mutate the gene */
if (Randomize.Rand() < 0.5) {
nval = New[i].Gene[j] +
delta(Gen, intervalo_mut.max - New[i].Gene[j], n_generaciones);
}
else {
nval = New[i].Gene[j] -
delta(Gen, New[i].Gene[j] - intervalo_mut.min, n_generaciones);
}
New[i].Gene[j] = nval;
New[i].n_e = 1;
/* we calculate the next position */
if (prob_mutacion < 1) {
m = Randomize.Rand();
Mu_next += (int) Math.ceil(Math.log(m) / Math.log(1.0 - prob_mutacion));
}
else {
Mu_next += 1;
}
}
Mu_next -= posiciones;
}
}
/** Fitness Function */
void Evaluate() {
double performance;
int i, j;
for (i = 0; i < long_poblacion; i++) {
/* if the chromosome aren't evaluated, it's evaluate */
if (New[i].n_e == 1) {
New[i].Perf = fun_adap.eval(New[i].Gene);
performance = New[i].Perf;
New[i].n_e = 0;
Trials++; /* we increment the number of evaluated chromosomes */
}
else {
performance = New[i].Perf;
}
/* we calculate the position of the best individual */
if (i == 0) {
Best_current_perf = performance;
Best_guy = 0;
}
else if (performance < Best_current_perf) {
Best_current_perf = performance;
Best_guy = i;
}
}
}
/* Elitist selection */
void Elitist() {
int i, k, found;
/* if the best individual of the old population aren't in the new population, we remplace the last individual for this */
for (i = 0, found = 0; i < long_poblacion && (found == 0); i++) {
for (k = 0, found = 1; (k < n_genes) && (found == 1); k++) {
if (New[i].Gene[k] != Old[Best_guy].Gene[k]) {
found = 0;
}
}
}
if (found == 0) {
for (k = 0; k < n_genes; k++) {
New[long_poblacion - 1].Gene[k] = Old[Best_guy].Gene[k];
}
New[long_poblacion - 1].Perf = Old[Best_guy].Perf;
New[long_poblacion - 1].n_e = 0;
}
}
/** Returns the best solution*/
public double[] solucion() {
return (New[Best_guy].Gene);
}
/** Returns the fitness of the best solution */
public double solucion_ec() {
return (New[Best_guy].Perf);
}
/** Returns 1 if the best current rule is in the list "L" yet */
private int Pertenece_AG(Structure C, Structure[] L, int n_explotados) {
int crom, gen, esta;
crom = 0;
while (crom < n_explotados) {
esta = 1;
gen = 0;
while (gen < n_genes && esta == 1) {
if (C.Gene[gen] != L[crom].Gene[gen]) {
esta = 0;
}
else {
gen++;
}
}
if (esta == 1) {
return (1);
}
crom++;
}
return (0);
}
/** Calculates the new value of sigma according to the number of mutation with hit*/
private double AdaptacionSigma(double old_sigma, double p, double n) {
/* if p<1/5, sigma lowers (c<1 -> sigma*c^(1/n)<sigma) */
if (p < 0.2) {
return (old_sigma * Math.pow(c, 1.0 / n));
}
/* if p>1/5, sigma increases (c<1 -> sigma/c^(1/n)>sigma)*/
if (p > 0.2) {
return (old_sigma / Math.pow(c, 1.0 / n));
}
/* if p=1/5, sigma doesn't change*/
return (old_sigma);
}
/** Generates a normal value with hope 0 and tipical deviation "desv */
private double ValorNormal(double desv) {
double u1, u2;
/* we generate 2 uniform values [0,1] */
u1 = Randomize.Rand();
u2 = Randomize.Rand();
/* we calcules a normal value with the uniform values */
return (desv * Math.sqrt( -2 * Math.log(u1)) * Math.sin(2 * PI * u2));
}
/** Evolution Strategy (1+1) */
void EE_1_1(Structure Padre, int Muta_C1, int Muta_C2) {
int j, gen, n_mutaciones, n_exitos, it_sin_exito, fin;
double x0, x1, x2, newx1, newx, S, m, sigma, new_sigma;
/* Inicialization of the counters */
n_mutaciones = n_exitos = it_sin_exito = fin = 0;
sigma = new_sigma = 1.0;
do {
if (Muta_C1 == 1) {
/* Mutation of C1 */
for (gen = 0; gen < primer_gen_C2; gen += 3) {
/* we obtain the fuzzy set */
x0 = Padre.Gene[gen];
x1 = Padre.Gene[gen + 1];
x2 = Padre.Gene[gen + 2];
/* Adaptation of S and mutation of the center point */
S = Adap.Minimo(x1 - x0, x2 - x1) / 2.0;
m = ValorNormal(new_sigma * S);
newx1 = x1 + m;
if (newx1 <= x0) {
Hijo.Gene[gen + 1] = x0;
newx1 = x0;
}
else {
if (newx1 >= x2) {
Hijo.Gene[gen + 1] = x2;
newx1 = x2;
}
else {
Hijo.Gene[gen + 1] = newx1;
}
}
/* Adaptation of S and mutation of the left point */
S = Adap.Minimo(x0 - intervalos[gen].min, newx1 - x0) / 2.0;
m = ValorNormal(new_sigma * S);
newx = x0 + m;
if (newx <= intervalos[gen].min) {
Hijo.Gene[gen] = intervalos[gen].min;
}
else {
if (newx >= newx1) {
Hijo.Gene[gen] = newx1;
}
else {
Hijo.Gene[gen] = newx;
}
}
/* Adaptation of S and mutation of the center right */
S = Adap.Minimo(x2 - newx1, intervalos[gen + 2].max - x2) / 2.0;
m = ValorNormal(new_sigma * S);
newx = x2 + m;
if (newx <= newx1) {
Hijo.Gene[gen + 2] = newx1;
}
else {
if (newx >= intervalos[gen + 2].max) {
Hijo.Gene[gen + 2] = intervalos[gen + 2].max;
}
else {
Hijo.Gene[gen + 2] = newx;
}
}
}
}
/* we don't mutate the antecedent (C1) */
else {
for (gen = 0; gen < primer_gen_C2; gen++) {
Hijo.Gene[gen] = Padre.Gene[gen];
}
}
if (Muta_C2 == 1) {
/* Mutation of C2 */
for (gen = primer_gen_C2; gen < n_genes; gen++) {
m = ValorNormal(new_sigma * S_sigma_consecuentes);
newx = Padre.Gene[gen] + m;
if (newx < intervalos[gen].min) {
Hijo.Gene[gen] = intervalos[gen].min;
}
else {
if (newx > intervalos[gen].max) {
Hijo.Gene[gen] = intervalos[gen].max;
}
else {
Hijo.Gene[gen] = newx;
}
}
}
}
/* we don't mutate the consequent (C2) */
else {
for (gen = primer_gen_C2; gen < n_genes; gen++) {
Hijo.Gene[gen] = Padre.Gene[gen];
}
}
/* we evaluate the son */
Hijo.Perf = fun_adap.eval(Hijo.Gene);
/* we count the mutation */
n_mutaciones += 1;
/* if the son is better than the father this relieve his father, we accept sigma and we count another hit */
if (Hijo.Perf < Padre.Perf) {
n_exitos += 1;
it_sin_exito = 0;
sigma = new_sigma;
for (j = 0; j < n_genes; j++) {
Padre.Gene[j] = Hijo.Gene[j];
}
Padre.Perf = Hijo.Perf;
}
else {
it_sin_exito++;
}
/* we adapt sigma */
new_sigma = AdaptacionSigma(sigma, n_exitos / (double) n_mutaciones, (double) n_genes - tabla.n_var_estado);
if (it_sin_exito >= n_gen_ee) {
fin = 1;
}
}
while (fin == 0);
}
/* Main of the Evolution Strategy (1+1) */
public void Estrategia_Evolucion() {
int i, j, temp, cromosoma, n_ya_explotados, n_a_explotar;
/* we evaluate the population */
for (i = 0; i < long_poblacion; i++) {
if (New[i].n_e == 1) {
New[i].Perf = fun_adap.eval(New[i].Gene);
New[i].n_e = 0;
}
}
/* we order the population by means of the bubble method */
for (i = 0; i < long_poblacion; i++) {
indices_ordenacion[i] = i;
}
for (i = 0; i < long_poblacion; i++) {
for (j = 0; j < long_poblacion - i - 1; j++) {
if (New[indices_ordenacion[j +
1]].Perf < New[indices_ordenacion[j]].Perf) {
temp = indices_ordenacion[j];
indices_ordenacion[j] = indices_ordenacion[j + 1];
indices_ordenacion[j + 1] = temp;
}
}
}
/* the evolution strategy is applied to each individual of the population with fitness better than 0 */
i = 0;
n_ya_explotados = 0;
n_a_explotar = (int) (porc_pob_ee * long_poblacion);
while ( (i < long_poblacion) && (n_ya_explotados < n_a_explotar)) {
/* we initialize the index of the chromosome */
cromosoma = indices_ordenacion[i];
/* we store this chromosome in the list of the exploited */
for (j = 0; j < n_genes; j++) {
YaExplotados[n_ya_explotados].Gene[j] = New[cromosoma].Gene[j];
}
/* Inicialization of the counters */
YaExplotados[n_ya_explotados].Perf = New[cromosoma].Perf;
n_ya_explotados++;
/* we apply the ES(1+1) */
EE_1_1(New[cromosoma], 1, 1);
/* we look for the next unrecurrent individual */
if (n_ya_explotados < n_a_explotar) {
do {
i++;
}
while (i < long_poblacion &&
Pertenece_AG(New[indices_ordenacion[i]], YaExplotados,
n_ya_explotados) == 1);
}
}
}
}