/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: KSNN.java * * The K Symetrical NN Algorithm. * A enhanced K-NN classifier.For each test instance, votes are * recieved from its K-Nearest Neighbors and, in addiction, from * train instances who would accept the test instance as one of their * K-Nearest Neighbors * * @author Written by Joaqu�n Derrac (University of Granada) 13/11/2008 * @version 1.0 * @since JDK1.5 * */ package keel.Algorithms.Lazy_Learning.KSNN; import keel.Algorithms.Lazy_Learning.LazyAlgorithm; import java.util.*; import org.core.*; public class KSNN extends LazyAlgorithm{ //Parameters int K; //Adictional structures double further[]; boolean selected[]; /** * The main method of the class * * @param script Name of the configuration script * */ public KSNN (String script) { readDataFiles(script); //Naming the algorithm name="Center NN"; //Inicialization of auxiliar structures further=new double [trainData.length]; selected=new boolean [trainData.length]; //Initialization stuff ends here. So, we can start time-counting setInitialTime(); } //end-method /** * Reads configuration script, to extract the parameter's values. * * @param script Name of the configuration script * */ protected void readParameters (String script) { String file; String line; StringTokenizer fileLines, tokens; file = Files.readFile (script); fileLines = new StringTokenizer (file,"\n\r"); //Discard in/out files definition fileLines.nextToken(); fileLines.nextToken(); fileLines.nextToken(); //Getting the number of neighbors line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); K = Integer.parseInt(tokens.nextToken().substring(1)); }//end-method /** * Calculates, for each train instance, the distance to its * further K neighbour. * */ public void getFurtherNeighbor(){ double minDist[]; int nearestN[]; double dist; boolean stop; nearestN = new int[K]; minDist = new double[K]; for(int instance=0;instance<trainData.length;instance++){ for (int i=0; i<K; i++) { nearestN[i] = -1; minDist[i] = Double.POSITIVE_INFINITY; } //find its K nearest neigbours for (int i=0; i<trainData.length; i++) { dist = euclideanDistance(trainData[instance],trainData[i]); if (dist > 0.0){ //leave-one-out //see if it's nearer than our previous selected neigbours stop=false; for(int j=0;j<K && !stop;j++){ if (dist < minDist[j]) { for (int l = K - 1; l >= j+1; l--) { minDist[l] = minDist[l - 1]; nearestN[l] = nearestN[l - 1]; } minDist[j] = dist; nearestN[j] = i; stop=true; } } } } //Get the maximun distance further[instance]=minDist[K-1]; } }//end-method /** * Evaluates a instance to predict its class. * * @param example Instance evaluated * @return Class predicted * */ protected int evaluate (double example[]) { int output; int votes[]; double minDist[]; int nearestN[]; double dist; boolean stop; int maxVotes; votes=new int[nClasses]; nearestN = new int[K]; minDist = new double[K]; for (int i=0; i<trainData.length; i++) { selected[i]=false; } //find its K nearest neigbours for (int i=0; i<K; i++) { nearestN[i] = -1; minDist[i] = Double.POSITIVE_INFINITY; } for (int i=0; i<trainData.length; i++) { dist = euclideanDistance(example,trainData[i]); if (dist > 0.0){ //leave-one-out //see if it's nearer than our previous selected neigbours stop=false; for(int j=0;j<K && !stop;j++){ if (dist < minDist[j]) { for (int l = K - 1; l >= j+1; l--) { minDist[l] = minDist[l - 1]; nearestN[l] = nearestN[l - 1]; } minDist[j] = dist; nearestN[j] = i; stop=true; } } } //Select if the example would be a nearest neighbour if(dist<further[i]){ selected[i]=true; } } //Select the neighbours for (int i=0; i<K; i++) { selected[nearestN[i]]=true; } //Voting process for (int i=0; i<nClasses; i++) { votes[i]=0; } for (int i=0; i<trainData.length; i++) { if(selected[i]==true){ votes[trainOutput[i]]++; } } //Select the final output output=-1; maxVotes=0; for(int i=0;i<nClasses;i++){ if(maxVotes<votes[i]){ maxVotes=votes[i]; output=i; } } return output; }//end-method } //end-class