/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Discretizers.FixedFrequency_Discretizer;
import java.util.*;
import keel.Algorithms.Discretizers.Basic.*;
import keel.Algorithms.Genetic_Rule_Learning.Globals.*;
/**
*<p>
* This class implements the Fixed Frequency discretizer.
* </p>
*
* @author Written by Jaume Bacardit (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 </p>
* Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 03/12/2008
* @version 1.1
* @since JDK1.5
*/
public class FixedFrequencyDiscretizer extends Discretizer {
double freqSize;
/**
* <p>
* Constructor of the class, initializes the numInt attribute
* </p>
* @param _freqSize frequency of examples per interval
*/
public FixedFrequencyDiscretizer(int _freqSize) {
freqSize=_freqSize;
}
/**
* <p>
* It returns a vector with the discretized values
* </p>
* @param attribute index of the attribute to discretize
* @param values vector of the indexes of the instances sorted from the lowest to the highest value of attribute
* @param begin index of the instance with the lowest value of attribute
* @param end index of the instance with the highest value of attribute
* @return vector with the discretized values
*/
protected Vector discretizeAttribute(int attribute,int []values,int begin,int end) {
double quota=freqSize;
double dBound=0.0;
int i;
int oldBound=0;
int numInt = (int)Math.ceil(((double)end-begin+1)/quota);
Vector cp=new Vector();
for(i=0;i<numInt-1;i++) {
dBound+=quota;
int iBound=(int)Math.round(dBound);
if(iBound<=oldBound) continue;
if(realValues[attribute][values[iBound-1]]!=realValues[attribute][values[iBound]]) {
double cutPoint=(realValues[attribute][values[iBound-1]]+realValues[attribute][values[iBound]])/2.0;
cp.addElement(new Double(cutPoint));
} else {
double val=realValues[attribute][values[iBound]];
int numFW=1;
while(iBound+numFW<=end && realValues[attribute][values[iBound+numFW]]==val) numFW++;
if(iBound+numFW>end) numFW=end-begin+2;
int numBW=1;
while(iBound-numBW>oldBound && realValues[attribute][values[iBound-numBW]]==val) numBW++;
if(iBound-numBW==oldBound) numBW=end-begin+2;
if(numFW<numBW) {
iBound+=numFW;
} else if(numBW<numFW) {
iBound-=numBW;
} else {
if(numFW==end-begin+2) {
return cp;
}
if(Rand.getReal()<0.5) {
iBound+=numFW;
} else {
iBound-=numBW;
iBound++;
}
}
double cutPoint=(realValues[attribute][values[iBound-1]]+realValues[attribute][values[iBound]])/2.0;
cp.addElement(new Double(cutPoint));
}
oldBound=iBound;
}
return cp;
}
}