/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.LQD.methods.FGFS_Rule_Weight; import java.io.BufferedReader; import java.io.FileWriter; import java.io.IOException; import java.util.Vector; /** * * File: fuzzy.java * * Properties and functions of individual of the population * * @author Written by Ana Palacios Jimenez (University of Oviedo) 25/006/2010 * @version 1.0 */ public class IndMichigan { //Un individuo Michigan es una regla fuzzy[][] X; Vector<Vector<Float>> Y; rule individuo; Interval fitness; IndMichigan(fuzzy[][] x,Vector<Vector<Float>> y,Vector<partition> pentradas,int clases, int COSTES, int alfa, Vector<Float> valores_clases,Vector<Vector<Float>> pesos,int ejemplo, int asigna_peso_regla) throws IOException { individuo= new rule(pentradas,clases,asigna_peso_regla);//inicializamos la el individuo if(ejemplo<x.length && ejemplo<10) individuo.obtain_rule(x,y,pentradas,clases,COSTES, alfa,valores_clases,pesos,ejemplo);//obtenemos los antecedentes de las reglas aleatoriamente y el consecuente else individuo.obtain_rule_random(x,y,pentradas,clases,COSTES, alfa,valores_clases,pesos);//obtenemos los antecedentes de las reglas aleatoriamente y el consecuente X=x; Y=y; } IndMichigan(Vector<Integer> ant,fuzzy[][] x,Vector<Vector<Float>> y,Vector<partition> pentradas,int clases, int COSTES, int alfa, Vector<Float> valores_clases,Vector<Vector<Float>> pesos,int asigna_peso_regla) throws IOException { // individuo= new rule(pentradas,clases, asigna_peso_regla); Integer[]a= new Integer[ant.size()]; for(int i=0;i<ant.size();i++) { a[i]= ant.get(i); } individuo.setantecedent(a); individuo.calculateconsequent(x, y, pentradas, clases,COSTES,alfa,valores_clases,pesos); X=x; Y=y; } public rule getregla(){return individuo;} public int size() { return individuo.size(); } public Interval getfitness() { return fitness; } public fuzzy[][] getX() { return X; } public Vector<Vector<Float>> getY() { return Y; } public void asignaejemplos(fuzzy[][] x,Vector<Vector<Float>> y) { X=x; Y=y; } }