/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.RE_SL_Methods.mogulSC;
import org.core.*;
import java.util.*;
class Tun_aprox {
public double semilla;
public long cont_soluciones;
public long Gen, n_genes, n_reglas, n_generaciones;
public int n_soluciones;
public String fich_datos_chequeo, fich_datos_tst, fich_datos_val;
public String fichero_conf, fichero_datos, ruta_salida;
public String fichero_br, fichero_reglas, fich_tra_obli, fich_tst_obli;
public String informe = "";
public String datos_inter = "";
public String cadenaReglas = "";
public MiDataset tabla, tabla_tst, tabla_val;
public BaseR base_reglas;
public Adap_Tun fun_adap;
public AG_Tun alg_gen;
public Tun_aprox(String f_e) {
fichero_conf = f_e;
}
private String Quita_blancos(String cadena) {
StringTokenizer sT = new StringTokenizer(cadena, "\t ", false);
return (sT.nextToken());
}
/** Reads the data of the configuration file */
public void leer_conf() {
int i, j;
String cadenaEntrada, valor;
double cruce, mutacion, a, b, tau;
int long_poblacion;
// we read the file in a String
informe = "";
cadenaEntrada = Fichero.leeFichero(fichero_conf);
StringTokenizer sT = new StringTokenizer(cadenaEntrada, "\n\r=", false);
// we read the algorithm's name
sT.nextToken();
sT.nextToken();
// we read the name of the training and test files
sT.nextToken();
valor = sT.nextToken();
StringTokenizer ficheros = new StringTokenizer(valor, "\t ", false);
fich_datos_chequeo = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
fich_datos_val = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
fich_datos_tst = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
//fichero_br = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
// we read the name of the output files
sT.nextToken();
valor = sT.nextToken();
ficheros = new StringTokenizer(valor, "\t ", false);
fich_tra_obli = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
fich_tst_obli = ( (ficheros.nextToken()).replace('\"', ' ')).trim();
String aux = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BR del primero
aux = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BD
fichero_br = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BR (seleccion)
fichero_reglas = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BR de tuning
ruta_salida = fich_tst_obli.substring(0, fich_tst_obli.lastIndexOf('/') + 1);
// we read the seed of the random generator
sT.nextToken();
valor = sT.nextToken();
semilla = Double.parseDouble(valor.trim());
Randomize.setSeed( (long) semilla); ;
for (i = 0; i < 17; i++) { //leo los 17 primeros parametros que son de los dos primeros m�todos
sT.nextToken(); //nombre parametro
sT.nextToken(); //valor parametro
}
// we read the Number of Iterations
sT.nextToken();
valor = sT.nextToken();
n_generaciones = Long.parseLong(valor.trim());
// we read the Population Size
sT.nextToken();
valor = sT.nextToken();
long_poblacion = Integer.parseInt(valor.trim());
// we read the Parameter tau
sT.nextToken();
valor = sT.nextToken();
tau = Double.parseDouble(valor.trim());
// we read the Parameter a
sT.nextToken();
valor = sT.nextToken();
a = Double.parseDouble(valor.trim());
// we read the Parameter b
sT.nextToken();
valor = sT.nextToken();
b = Double.parseDouble(valor.trim());
// we read the Cross Probability
sT.nextToken();
valor = sT.nextToken();
cruce = Double.parseDouble(valor.trim());
// we read the Mutation Probability
sT.nextToken();
valor = sT.nextToken();
mutacion = Double.parseDouble(valor.trim());
// we create all the objects
tabla = new MiDataset(fich_datos_chequeo, false);
if (tabla.salir == false) {
tabla_val = new MiDataset(fich_datos_val, false);
tabla_tst = new MiDataset(fich_datos_tst, false);
base_reglas = new BaseR(fichero_br, tabla);
fun_adap = new Adap_Tun(tabla, base_reglas, tau, 1);
alg_gen = new AG_Tun(long_poblacion, cruce, mutacion, a, b, fun_adap);
}
}
public void run() {
int i, j;
double ec, el, ec_tst, el_tst;
/* We read the configutate file and we initialize the structures and variables */
leer_conf();
if (tabla.salir == false) {
Gen = 0;
/* Generation of the initial population */
alg_gen.Initialize(fichero_br, tabla.n_variables);
/* Evaluation of the current population */
alg_gen.Evaluate();
Gen++;
/* Main of the genetic algorithm */
do {
/* Interchange of the new and old population */
alg_gen.Intercambio();
/* Selection by means of Baker */
alg_gen.Select();
/* Crossover */
alg_gen.Max_Min_Crossover();
/* Mutation */
alg_gen.Mutacion_No_Uniforme(Gen, n_generaciones);
/* Elitist Selection */
alg_gen.Elitist();
/* Evaluation if the current population */
alg_gen.Evaluate();
/* we increment the counter */
Gen++;
}
while (Gen <= n_generaciones);
/* we calcule the MSEs */
fun_adap.Decodifica(alg_gen.solucion());
fun_adap.Error_tra();
ec = fun_adap.EC;
el = fun_adap.EL;
fun_adap.Error_tst(tabla_tst);
ec_tst = fun_adap.EC;
el_tst = fun_adap.EL;
fun_adap.Cubrimientos_Base();
/* we write the RB */
cadenaReglas = base_reglas.BRtoString();
cadenaReglas += "\nMSEtra: " + ec + " MSEtst: " + ec_tst +
"\nAverage covering degree: " + fun_adap.medcb +
" Minimum covering degree: " + fun_adap.mincb;
Fichero.escribeFichero(fichero_reglas, cadenaReglas);
/* we write the obligatory output files*/
String salida_tra = tabla.getCabecera();
salida_tra += fun_adap.getSalidaObli(tabla_val);
Fichero.escribeFichero(fich_tra_obli, salida_tra);
String salida_tst = tabla_tst.getCabecera();
salida_tst += fun_adap.getSalidaObli(tabla_tst);
Fichero.escribeFichero(fich_tst_obli, salida_tst);
/* we write the MSEs in specific files */
Fichero.AnadirtoFichero(ruta_salida + "tunaproxcomunR.txt",
"" + base_reglas.n_reglas + "\n");
Fichero.AnadirtoFichero(ruta_salida + "tunaproxcomunTRA.txt",
"" + ec + "\n");
Fichero.AnadirtoFichero(ruta_salida + "tunaproxcomunTST.txt",
"" + ec_tst + "\n");
}
}
}