/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.RE_SL_Methods.mogulSC; import org.core.*; import java.util.*; class Tun_aprox { public double semilla; public long cont_soluciones; public long Gen, n_genes, n_reglas, n_generaciones; public int n_soluciones; public String fich_datos_chequeo, fich_datos_tst, fich_datos_val; public String fichero_conf, fichero_datos, ruta_salida; public String fichero_br, fichero_reglas, fich_tra_obli, fich_tst_obli; public String informe = ""; public String datos_inter = ""; public String cadenaReglas = ""; public MiDataset tabla, tabla_tst, tabla_val; public BaseR base_reglas; public Adap_Tun fun_adap; public AG_Tun alg_gen; public Tun_aprox(String f_e) { fichero_conf = f_e; } private String Quita_blancos(String cadena) { StringTokenizer sT = new StringTokenizer(cadena, "\t ", false); return (sT.nextToken()); } /** Reads the data of the configuration file */ public void leer_conf() { int i, j; String cadenaEntrada, valor; double cruce, mutacion, a, b, tau; int long_poblacion; // we read the file in a String informe = ""; cadenaEntrada = Fichero.leeFichero(fichero_conf); StringTokenizer sT = new StringTokenizer(cadenaEntrada, "\n\r=", false); // we read the algorithm's name sT.nextToken(); sT.nextToken(); // we read the name of the training and test files sT.nextToken(); valor = sT.nextToken(); StringTokenizer ficheros = new StringTokenizer(valor, "\t ", false); fich_datos_chequeo = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); fich_datos_val = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); fich_datos_tst = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //fichero_br = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); // we read the name of the output files sT.nextToken(); valor = sT.nextToken(); ficheros = new StringTokenizer(valor, "\t ", false); fich_tra_obli = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); fich_tst_obli = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); String aux = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BR del primero aux = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BD fichero_br = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BR (seleccion) fichero_reglas = ( (ficheros.nextToken()).replace('\"', ' ')).trim(); //BR de tuning ruta_salida = fich_tst_obli.substring(0, fich_tst_obli.lastIndexOf('/') + 1); // we read the seed of the random generator sT.nextToken(); valor = sT.nextToken(); semilla = Double.parseDouble(valor.trim()); Randomize.setSeed( (long) semilla); ; for (i = 0; i < 17; i++) { //leo los 17 primeros parametros que son de los dos primeros m�todos sT.nextToken(); //nombre parametro sT.nextToken(); //valor parametro } // we read the Number of Iterations sT.nextToken(); valor = sT.nextToken(); n_generaciones = Long.parseLong(valor.trim()); // we read the Population Size sT.nextToken(); valor = sT.nextToken(); long_poblacion = Integer.parseInt(valor.trim()); // we read the Parameter tau sT.nextToken(); valor = sT.nextToken(); tau = Double.parseDouble(valor.trim()); // we read the Parameter a sT.nextToken(); valor = sT.nextToken(); a = Double.parseDouble(valor.trim()); // we read the Parameter b sT.nextToken(); valor = sT.nextToken(); b = Double.parseDouble(valor.trim()); // we read the Cross Probability sT.nextToken(); valor = sT.nextToken(); cruce = Double.parseDouble(valor.trim()); // we read the Mutation Probability sT.nextToken(); valor = sT.nextToken(); mutacion = Double.parseDouble(valor.trim()); // we create all the objects tabla = new MiDataset(fich_datos_chequeo, false); if (tabla.salir == false) { tabla_val = new MiDataset(fich_datos_val, false); tabla_tst = new MiDataset(fich_datos_tst, false); base_reglas = new BaseR(fichero_br, tabla); fun_adap = new Adap_Tun(tabla, base_reglas, tau, 1); alg_gen = new AG_Tun(long_poblacion, cruce, mutacion, a, b, fun_adap); } } public void run() { int i, j; double ec, el, ec_tst, el_tst; /* We read the configutate file and we initialize the structures and variables */ leer_conf(); if (tabla.salir == false) { Gen = 0; /* Generation of the initial population */ alg_gen.Initialize(fichero_br, tabla.n_variables); /* Evaluation of the current population */ alg_gen.Evaluate(); Gen++; /* Main of the genetic algorithm */ do { /* Interchange of the new and old population */ alg_gen.Intercambio(); /* Selection by means of Baker */ alg_gen.Select(); /* Crossover */ alg_gen.Max_Min_Crossover(); /* Mutation */ alg_gen.Mutacion_No_Uniforme(Gen, n_generaciones); /* Elitist Selection */ alg_gen.Elitist(); /* Evaluation if the current population */ alg_gen.Evaluate(); /* we increment the counter */ Gen++; } while (Gen <= n_generaciones); /* we calcule the MSEs */ fun_adap.Decodifica(alg_gen.solucion()); fun_adap.Error_tra(); ec = fun_adap.EC; el = fun_adap.EL; fun_adap.Error_tst(tabla_tst); ec_tst = fun_adap.EC; el_tst = fun_adap.EL; fun_adap.Cubrimientos_Base(); /* we write the RB */ cadenaReglas = base_reglas.BRtoString(); cadenaReglas += "\nMSEtra: " + ec + " MSEtst: " + ec_tst + "\nAverage covering degree: " + fun_adap.medcb + " Minimum covering degree: " + fun_adap.mincb; Fichero.escribeFichero(fichero_reglas, cadenaReglas); /* we write the obligatory output files*/ String salida_tra = tabla.getCabecera(); salida_tra += fun_adap.getSalidaObli(tabla_val); Fichero.escribeFichero(fich_tra_obli, salida_tra); String salida_tst = tabla_tst.getCabecera(); salida_tst += fun_adap.getSalidaObli(tabla_tst); Fichero.escribeFichero(fich_tst_obli, salida_tst); /* we write the MSEs in specific files */ Fichero.AnadirtoFichero(ruta_salida + "tunaproxcomunR.txt", "" + base_reglas.n_reglas + "\n"); Fichero.AnadirtoFichero(ruta_salida + "tunaproxcomunTRA.txt", "" + ec + "\n"); Fichero.AnadirtoFichero(ruta_salida + "tunaproxcomunTST.txt", "" + ec_tst + "\n"); } } }