/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /*********************************************************************** This file is part of the Fuzzy Instance Based Learning package, a Java package implementing Fuzzy Nearest Neighbor Classifiers as complementary material for the paper: Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects Copyright (C) 2012 J. Derrac (jderrac@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) F. Herrera (herrera@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: PosIBL.java * * The PosIBL algorithm. * * @author Written by Joaqu�n Derrac (University of Granada) 13/11/2011 * @version 1.0 * @since JDK1.5 * */ package keel.Algorithms.Fuzzy_Instance_Based_Learning.PosIBL; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Arrays; import java.util.StringTokenizer; import org.core.Files; import keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm; import keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Util; public class PosIBL extends FuzzyIBLAlgorithm { private double BETA; private double delta []; /** * Reads the parameters of the algorithm. * * @param script Configuration script * */ @Override protected void readParameters(String script) { String file; String line; String type; StringTokenizer fileLines, tokens; file = Files.readFile (script); fileLines = new StringTokenizer (file,"\n\r"); //Discard in/out files definition fileLines.nextToken(); fileLines.nextToken(); fileLines.nextToken(); //Getting the M parameter line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); BETA = Double.parseDouble(tokens.nextToken().substring(1)); } //end-method /** * Main builder. Initializes the methods' structures * * @param script Configuration script */ public PosIBL(String script){ readDataFiles(script); //Naming the algorithm name="PosIBL"; delta = new double [trainData.length]; Arrays.fill(delta, 0.0); //Initialization of Reporting tool ReportTool.setOutputFile(outFile[2]); } //end-method /** * Generates the model of the algorithm */ public void generateModel (){ //Start of model time Timer.resetTime(); double minDist=0; double dist; //search for the nearest enemy for(int i=0;i<trainData.length;i++){ minDist=Double.MAX_VALUE; for(int j=0;j<trainData.length;j++){ if(trainOutput[i]!=trainOutput[j]){ dist=Util.euclideanDistance(trainData[i], trainData[j]); if(minDist>dist){ minDist=dist; } } } delta[i]=minDist; if(delta[i]<(1.0-BETA)){ delta[i]=1.0-BETA; } } //End of model time Timer.setModelTime(); //Showing results System.out.println(name+" "+ relation + " Model " + Timer.getModelTime() + "s"); } /** * Classifies the training set (leave-one-out) */ public void classifyTrain(){ //Start of training time Timer.resetTime(); classifyTrainSet(); //End of training time Timer.setTrainingTime(); //Showing results System.out.println(name+" "+ relation + " Training " + Timer.getTrainingTime() + "s"); } //end-method /** * Classifies the test set */ public void classifyTest(){ //Start of training time Timer.resetTime(); classifyTestSet(); //End of test time Timer.setTestTime(); //Showing results System.out.println(name+" "+ relation + " Test " + Timer.getTestTime() + "s"); } //end-method /** * Classifies the training set */ public void classifyTrainSet(){ for(int i=0;i<trainData.length;i++){ trainPrediction[i]=computeClass(i); } } //end-method /** * Classifies the test set */ public void classifyTestSet(){ for(int i=0;i<testData.length;i++){ testPrediction[i]=computeTestClass(i); } } //end-method /** * Computes the class of a instance given its membership array * @param pertenence Membership array * * @return Class assigned (crisp) */ private int computeClass(int index){ double maxSim=Double.MIN_VALUE; double dist,sim; int nearest=0; int result; for(int i=0;i<trainData.length;i++){ if(i!=index){ dist=Util.euclideanDistance(trainData[i], trainData[index]); //kernel function dist=1.0-dist; dist=-1.0*delta[i]*(1.0-dist); sim=Math.exp(dist); if(maxSim<sim){ maxSim=sim; nearest=i; } } } result=trainOutput[nearest]; return result; } //end-method /** * Computes the class of a instance given its membership array * @param pertenence Membership array * * @return Class assigned (crisp) */ private int computeTestClass(int index){ double maxSim=Double.MIN_VALUE; double dist,sim; int nearest=0; int result; for(int i=0;i<trainData.length;i++){ dist=Util.euclideanDistance(trainData[i], testData[index]); //kernel function dist=1.0-dist; dist= -1.0*delta[i]*(1.0-dist); sim=Math.exp(dist); if(maxSim<sim){ maxSim=sim; nearest=i; } } result=trainOutput[nearest]; return result; } //end-method /** * Reports the results obtained */ public void printReport(){ writeOutput(outFile[0], trainOutput, trainPrediction); writeOutput(outFile[1], testOutput, testPrediction); ReportTool.setResults(trainOutput,trainPrediction,testOutput,testPrediction,nClasses); ReportTool.printReport(); } //end-method } //end-class