/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * File: ADASYN.java * </p> * * The ADASYN algorithm is an oversampling method used to deal with the imbalanced * problem. * * @author Written by Salvador Garcia Lopez (University of Granada) 30/03/2006 * @author Modified by Victoria Lopez Morales (University of Granada) 21/09/2010 * @author Modified by Victoria Lopez Morales (University of Granada) 08/07/2011 * @version 0.1 * @since JDK1.5 * */ package keel.Algorithms.ImbalancedClassification.Resampling.ADASYN; import keel.Algorithms.Preprocess.Basic.*; import keel.Dataset.Attribute; import keel.Dataset.Attributes; import keel.Dataset.Instance; import org.core.*; import java.util.Arrays; import java.util.StringTokenizer; public class ADASYN extends Metodo { /** * <p> * The ADASYN algorithm is an oversampling method used to deal with the imbalanced * problem. * </p> */ /*Own parameters of the algorithm*/ private long semilla; private int kSMOTE; private int ASMO; private boolean balance; private double smoting; private String interpolation; private double alpha; private double mu; /** * <p> * Constructor of the class. It configures the execution of the algorithm by * reading the configuration script that indicates the parameters that are * going to be used. * </p> * * @param ficheroScript Name of the configuration script that indicates the * parameters that are going to be used during the execution of the algorithm */ public ADASYN (String ficheroScript) { super (ficheroScript); } /** * <p> * The main method of the class that includes the operations of the algorithm. * It includes all the operations that the algorithm has and finishes when it * writes the output information into files. * </p> */ public void run () { int nPos = 0; int nNeg = 0; int i, j, l, m; int tmp; int posID, negID; int positives[]; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; double genS[][]; double genR[][]; int genN[][]; boolean genM[][]; int clasesGen[]; int tamS; int pos; int neighbors[][]; int nn; double Ri[]; int cont; double sumRi = 0; long [] gi; long tiempo = System.currentTimeMillis(); /*Count of number of positive and negative examples*/ for (i=0; i<clasesTrain.length; i++) { if (clasesTrain[i] == 0) nPos++; else nNeg++; } if (nPos > nNeg) { tmp = nPos; nPos = nNeg; nNeg = tmp; posID = 1; negID = 0; } else { posID = 0; negID = 1; } /*Localize the positive instances*/ positives = new int[nPos]; for (i=0, j=0; i<clasesTrain.length; i++) { if (clasesTrain[i] == posID) { positives[j] = i; j++; } } /*Randomize the instance presentation*/ Randomize.setSeed (semilla); for (i=0; i<positives.length; i++) { tmp = positives[i]; pos = Randomize.Randint(0,positives.length-1); positives[i] = positives[pos]; positives[pos] = tmp; } Ri = new double[positives.length]; neighbors = new int[positives.length][kSMOTE]; for (i=0; i<positives.length; i++) { KNN.evaluacionKNN2 (kSMOTE, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[positives[i]], realTrain[positives[i]], nominalTrain[positives[i]], nulosTrain[positives[i]], 2, distanceEu, neighbors[i]); cont = 0; for (j=0; j<kSMOTE; j++) { if (clasesTrain[neighbors[i][j]] != posID) { cont++; } } Ri[i] = (double)cont / (double)kSMOTE; sumRi += Ri[i]; } for (i=0; i<positives.length; i++) { if (Ri[i] != 0) Ri[i] /= sumRi; } /*Obtain k-nearest neighbors of each positive instance*/ for (i=0; i<positives.length; i++) { switch (ASMO) { case 0: KNN.evaluacionKNN2 (kSMOTE, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[positives[i]], realTrain[positives[i]], nominalTrain[positives[i]], nulosTrain[positives[i]], 2, distanceEu, neighbors[i]); break; case 1: evaluationKNNClass (kSMOTE, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[positives[i]], realTrain[positives[i]], nominalTrain[positives[i]], nulosTrain[positives[i]], 2, distanceEu, neighbors[i],posID); break; case 2: evaluationKNNClass (kSMOTE, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[positives[i]], realTrain[positives[i]], nominalTrain[positives[i]], nulosTrain[positives[i]], 2, distanceEu, neighbors[i],negID); break; } } /*Interpolation of the minority instances*/ if (balance) { genS = new double[nNeg-nPos][datosTrain[0].length]; genR = new double[nNeg-nPos][datosTrain[0].length]; genN = new int[nNeg-nPos][datosTrain[0].length]; genM = new boolean[nNeg-nPos][datosTrain[0].length]; clasesGen = new int[nNeg-nPos]; } else { genS = new double[(int)(nPos*smoting)][datosTrain[0].length]; genR = new double[(int)(nPos*smoting)][datosTrain[0].length]; genN = new int[(int)(nPos*smoting)][datosTrain[0].length]; genM = new boolean[(int)(nPos*smoting)][datosTrain[0].length]; clasesGen = new int[(int)(nPos*smoting)]; } int total_gi = 0; boolean [] added; int random; gi = new long [positives.length]; added = new boolean [positives.length]; Arrays.fill(added, false); for (i=0; i<positives.length; i++) { gi[i] = Math.round((double)genS.length * Ri[i]); total_gi += gi[i]; } if (total_gi < genS.length) { while ((total_gi+positives.length) < genS.length) { for (i=0; i<positives.length; i++) { gi[i]++; total_gi++; } } while (total_gi < genS.length) { random = Randomize.Randint(0, positives.length); if (!added[random]) { added[random] = true; total_gi++; gi[random]++; } } } else if (total_gi > genS.length) { while ((total_gi-positives.length) > genS.length) { for (i=0; i<positives.length; i++) { gi[i]--; total_gi--; } } while (total_gi > genS.length) { random = Randomize.Randint(0, positives.length); if (!added[random]) { added[random] = true; total_gi--; gi[random]--; } } } for (i=0, j=0; j<genS.length; i++) { for (l=0; l<gi[i] && j<genS.length; l++, j++) { clasesGen[j] = posID; nn = Randomize.Randint(0,kSMOTE-1); interpolate (realTrain[positives[i%positives.length]],realTrain[neighbors[i%positives.length][nn]],nominalTrain[positives[i%positives.length]],nominalTrain[neighbors[i%positives.length][nn]],nulosTrain[positives[i%positives.length]],nulosTrain[neighbors[i%positives.length][nn]],genS[j],genR[j],genN[j],genM[j],interpolation,alpha,mu); } } if (balance) { tamS = 2*nNeg; } else { tamS = nNeg + nPos + (int)(nPos*smoting); } /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosTrain[0].length]; conjR = new double[tamS][datosTrain[0].length]; conjN = new int[tamS][datosTrain[0].length]; conjM = new boolean[tamS][datosTrain[0].length]; clasesS = new int[tamS]; for (j=0; j<datosTrain.length; j++) { for (l=0; l<datosTrain[0].length; l++) { conjS[j][l] = datosTrain[j][l]; conjR[j][l] = realTrain[j][l]; conjN[j][l] = nominalTrain[j][l]; conjM[j][l] = nulosTrain[j][l]; } clasesS[j] = clasesTrain[j]; } for (m=0;j<tamS; j++, m++) { for (l=0; l<datosTrain[0].length; l++) { conjS[j][l] = genS[m][l]; conjR[j][l] = genR[m][l]; conjN[j][l] = genN[m][l]; conjM[j][l] = genM[m][l]; } clasesS[j] = clasesGen[m]; } System.out.println("ADASYN "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } /** * <p> * Computes the k nearest neighbors of a given item belonging to a fixed class. * With that neighbors a suggested class for the item is returned. * </p> * * @param nvec Number of nearest neighbors that are going to be searched * @param conj Matrix with the data of all the items in the dataset * @param real Matrix with the data associated to the real attributes of the dataset * @param nominal Matrix with the data associated to the nominal attributes of the dataset * @param nulos Matrix with the data associated to the missing values of the dataset * @param clases Array with the associated class for each item in the dataset * @param ejemplo Array with the data of the specific item in the dataset used * as a reference in the nearest neighbor search * @param ejReal Array with the data of the real attributes of the specific item in the dataset * @param ejNominal Array with the data of the nominal attributes of the specific item in the dataset * @param ejNulos Array with the data of the missing values of the specific item in the dataset * @param nClases Class of the specific item in the dataset * @param distance Kind of distance used in the nearest neighbors computation. * If true the distance used is the euclidean, if false the HVMD distance is used * @param vecinos Array that will have the nearest neighbours id for the current specific item * @param clase Class of the neighbours searched for the item * @return the majority class for all the neighbors of the item */ public static int evaluationKNNClass (int nvec, double conj[][], double real[][], int nominal[][], boolean nulos[][], int clases[], double ejemplo[], double ejReal[], int ejNominal[], boolean ejNulos[], int nClases, boolean distance, int vecinos[], int clase) { int i, j, l; boolean parar = false; int vecinosCercanos[]; double minDistancias[]; int votos[]; double dist; int votada, votaciones; if (nvec > conj.length) nvec = conj.length; votos = new int[nClases]; vecinosCercanos = new int[nvec]; minDistancias = new double[nvec]; for (i=0; i<nvec; i++) { vecinosCercanos[i] = -1; minDistancias[i] = Double.POSITIVE_INFINITY; } for (i=0; i<conj.length; i++) { dist = KNN.distancia(conj[i], real[i], nominal[i], nulos[i], ejemplo, ejReal, ejNominal, ejNulos, distance); if (dist > 0 && clases[i] == clase) { parar = false; for (j = 0; j < nvec && !parar; j++) { if (dist < minDistancias[j]) { parar = true; for (l = nvec - 1; l >= j+1; l--) { minDistancias[l] = minDistancias[l - 1]; vecinosCercanos[l] = vecinosCercanos[l - 1]; } minDistancias[j] = dist; vecinosCercanos[j] = i; } } } } for (j=0; j<nClases; j++) { votos[j] = 0; } for (j=0; j<nvec; j++) { if (vecinosCercanos[j] >= 0) votos[clases[vecinosCercanos[j]]] ++; } votada = 0; votaciones = votos[0]; for (j=1; j<nClases; j++) { if (votaciones < votos[j]) { votaciones = votos[j]; votada = j; } } for (i=0; i<vecinosCercanos.length; i++) vecinos[i] = vecinosCercanos[i]; return votada; } /** * <p> * Generates a synthetic example for the minority class from two existing * examples in the current population * </p> * * @param ra Array with the real values of the first example in the current population * @param rb Array with the real values of the second example in the current population * @param na Array with the nominal values of the first example in the current population * @param nb Array with the nominal values of the second example in the current population * @param ma Array with the missing values of the first example in the current population * @param mb Array with the missing values of the second example in the current population * @param resS Array with the general data about the generated example * @param resR Array with the real values of the generated example * @param resN Array with the nominal values of the generated example * @param resM Array with the missing values of the generated example * @param interpolation Kind of interpolation used to generate the synthetic example * @param alpha Parameter used in the BLX-alpha interpolation * @param mu Parameter used in the SBX interpolation and the normal interpolation */ void interpolate (double ra[], double rb[], int na[], int nb[], boolean ma[], boolean mb[], double resS[], double resR[], int resN[], boolean resM[], String interpolation, double alpha, double mu) { int i; double diff; double gap; int suerte; double Cmin, Cmax, I, B, A1, B1; gap = Randomize.Rand(); for (i=0; i<ra.length; i++) { if (ma[i] == true && mb[i] == true) { resM[i] = true; resS[i] = 0; } else if (ma[i] == true){ if (entradas[i].getType() == Attribute.REAL) { resR[i] = rb[i]; resS[i] = (resR[i] + entradas[i].getMinAttribute()) / (entradas[i].getMaxAttribute() - entradas[i].getMinAttribute()); } else if (entradas[i].getType() == Attribute.INTEGER) { resR[i] = rb[i]; resS[i] = (resR[i] + entradas[i].getMinAttribute()) / (entradas[i].getMaxAttribute() - entradas[i].getMinAttribute()); } else { resN[i] = nb[i]; resS[i] = (double)resN[i] / (double)(entradas[i].getNominalValuesList().size() - 1); } } else if (mb[i] == true) { if (entradas[i].getType() == Attribute.REAL) { resR[i] = ra[i]; resS[i] = (resR[i] + entradas[i].getMinAttribute()) / (entradas[i].getMaxAttribute() - entradas[i].getMinAttribute()); } else if (entradas[i].getType() == Attribute.INTEGER) { resR[i] = ra[i]; resS[i] = (resR[i] + entradas[i].getMinAttribute()) / (entradas[i].getMaxAttribute() - entradas[i].getMinAttribute()); } else { resN[i] = na[i]; resS[i] = (double)resN[i] / (double)(entradas[i].getNominalValuesList().size() - 1); } } else { resM[i] = false; if (entradas[i].getType() != Attribute.NOMINAL) { if (interpolation.equalsIgnoreCase("standard")) { diff = rb[i] - ra[i]; resR[i] = ra[i] + gap*diff; } else if (interpolation.equalsIgnoreCase("uniform")) { suerte = Randomize.Randint(0, 2); if (suerte == 0) { resR[i] = ra[i]; } else { resR[i] = rb[i]; } } else if (interpolation.equalsIgnoreCase("arithmetical")) { diff = rb[i] - ra[i]; gap = Randomize.Rand(); resR[i] = ra[i] + gap*diff; } else if (interpolation.equalsIgnoreCase("blx-alpha")) { Cmax = Math.max(ra[i], rb[i]); Cmin = Math.min(ra[i], rb[i]); I = Cmax - Cmin; resR[i] = Randomize.RanddoubleClosed(Cmin - I*alpha, Cmax + I*alpha); } else if (interpolation.equalsIgnoreCase("sbx")) { gap = Randomize.Rand(); if (gap <= 0.5) { B = Math.pow(2*gap,1.0/(mu+1)); } else { B = Math.pow(2*(1-gap), 1.0/(mu+1)); } resR[i] = 0.5*((1-B)*ra[i] + (1+B)*rb[i]); } else if (interpolation.equalsIgnoreCase("fuzzy")) { Cmin = Math.min(ra[i], rb[i]); Cmax = Math.max(ra[i], rb[i]); I = (Cmax - Cmin) * 0.5; A1 = Cmin - I; if (A1 < entradas[i].getMinAttribute()) A1 = entradas[i].getMinAttribute(); B1 = Cmax + I; if (B1 < entradas[i].getMaxAttribute()) B1 = entradas[i].getMaxAttribute(); if (Randomize.Rand() < 0.5) { resR[i] = DistTriangular (A1, Cmin, Cmin + I); } else { resR[i] = DistTriangular (Cmax - I, Cmax, B1); } } else { I = Math.abs(ra[i]-rb[i]); resR[i] = ra[i] + NormalValue(I/mu); } if (resR[i] < entradas[i].getMinAttribute()) resR[i] = entradas[i].getMinAttribute(); else if (resR[i] > entradas[i].getMaxAttribute()) resR[i] = entradas[i].getMaxAttribute(); if (entradas[i].getType() == Attribute.INTEGER) { resR[i] = Math.round(resR[i]); } resS[i] = (resR[i] + entradas[i].getMinAttribute()) / (entradas[i].getMaxAttribute() - entradas[i].getMinAttribute()); } else { suerte = Randomize.Randint(0, 2); if (suerte == 0) { resN[i] = na[i]; } else { resN[i] = nb[i]; } resS[i] = (double)resN[i] / (double)(entradas[i].getNominalValuesList().size() - 1); } } } } /** * <p> * Computes the triangular distance between three values * </p> * * @param A First value used to compute the triangular distance * @param B Second value used to compute the triangular distance * @param C Third value used to compute the triangular distance * @return the triangular distance between the three values */ double DistTriangular(double A, double B, double C) { double S, T, Z, u_1, u_2, x; if (A==C) return(B); S=B-A; T=C-A; u_1 = Randomize.Rand(); u_2 = Randomize.Rand(); Z = S/T; if (u_1<= Z) { x=S*Math.sqrt(u_2)+A; return(x); } else { x=T-(T-S)*Math.sqrt(u_2)+A; return(x); } } /** * <p> * Obtains a normal value transformation from a given data * </p> * * @param desv Value that is going to be transformed * @return the normal value transformation applied */ double NormalValue (double desv) { double u1, u2; u1=Randomize.Rand(); u2=Randomize.Rand(); return desv * Math.sqrt (-2*Math.log(u1)) * Math.sin (2*Math.PI*u2); } /** * <p> * Obtains the parameters used in the execution of the algorithm and stores * them in the private variables of the class * </p> * * @param ficheroScript Name of the configuration script that indicates the * parameters that are going to be used during the execution of the algorithm */ public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); kSMOTE = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of SMOTE algorithm*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); token = token.substring(1); if (token.equalsIgnoreCase("both")) ASMO = 0; else if (token.equalsIgnoreCase("minority")) ASMO = 1; else ASMO = 2; /*Getting the type of balancing in SMOTE*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); token = token.substring(1); if (token.equalsIgnoreCase("YES")) balance = true; else balance = false; /*Getting the quantity of smoting*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); smoting = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; /*Getting the type of interpolation*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); interpolation = tokens.nextToken().substring(1); /*Getting the parameter alpha for BLX-alpha*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); alpha = Double.parseDouble(tokens.nextToken().substring(1)); /*Getting the parameter mu for SBX and PBX*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); mu = Double.parseDouble(tokens.nextToken().substring(1)); } /** * This function builds the data matrix for reference data and normalizes inputs values */ protected void normalizar () throws CheckException { int i, j, k; Instance temp; double caja[]; StringTokenizer tokens; boolean nulls[]; /*Check if dataset corresponding with a classification problem*/ if (Attributes.getOutputNumAttributes() < 1) { throw new CheckException ("This dataset haven?t outputs, so it not corresponding to a classification problem."); } else if (Attributes.getOutputNumAttributes() > 1) { throw new CheckException ("This dataset have more of one output."); } if (Attributes.getOutputAttribute(0).getType() == Attribute.REAL) { throw new CheckException ("This dataset have an input attribute with floating values, so it not corresponding to a classification problem."); } entradas = Attributes.getInputAttributes(); salida = Attributes.getOutputAttribute(0); nEntradas = Attributes.getInputNumAttributes(); tokens = new StringTokenizer (training.getHeader()," \n\r"); tokens.nextToken(); relation = tokens.nextToken(); datosTrain = new double[training.getNumInstances()][Attributes.getInputNumAttributes()]; clasesTrain = new int[training.getNumInstances()]; caja = new double[1]; nulosTrain = new boolean[training.getNumInstances()][Attributes.getInputNumAttributes()]; nominalTrain = new int[training.getNumInstances()][Attributes.getInputNumAttributes()]; realTrain = new double[training.getNumInstances()][Attributes.getInputNumAttributes()]; for (i=0; i<training.getNumInstances(); i++) { temp = training.getInstance(i); nulls = temp.getInputMissingValues(); datosTrain[i] = training.getInstance(i).getAllInputValues(); for (j=0; j<nulls.length; j++) if (nulls[j]) { datosTrain[i][j]=0.0; nulosTrain[i][j] = true; } caja = training.getInstance(i).getAllOutputValues(); clasesTrain[i] = (int) caja[0]; for (k = 0; k < datosTrain[i].length; k++) { if (Attributes.getInputAttribute(k).getType() == Attribute.NOMINAL) { nominalTrain[i][k] = (int)datosTrain[i][k]; datosTrain[i][k] /= Attributes.getInputAttribute(k). getNominalValuesList().size() - 1; } else { realTrain[i][k] = datosTrain[i][k]; datosTrain[i][k] -= Attributes.getInputAttribute(k).getMinAttribute(); datosTrain[i][k] /= Attributes.getInputAttribute(k).getMaxAttribute() - Attributes.getInputAttribute(k).getMinAttribute(); if (Double.isNaN(datosTrain[i][k])){ datosTrain[i][k] = realTrain[i][k]; } } } } datosTest = new double[test.getNumInstances()][Attributes.getInputNumAttributes()]; clasesTest = new int[test.getNumInstances()]; caja = new double[1]; for (i=0; i<test.getNumInstances(); i++) { temp = test.getInstance(i); nulls = temp.getInputMissingValues(); datosTest[i] = test.getInstance(i).getAllInputValues(); for (j=0; j<nulls.length; j++) if (nulls[j]) { datosTest[i][j]=0.0; } caja = test.getInstance(i).getAllOutputValues(); clasesTest[i] = (int) caja[0]; } } //end-method }