/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // POP.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 28-7-2004. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.POP; import keel.Algorithms.Preprocess.Basic.*; import keel.Dataset.Attribute; import keel.Dataset.Attributes; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class POP extends Metodo { public POP (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l; int nClases; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int nSel; boolean marcas[]; int weakness[]; Referencia linea[]; int minWeak; long tiempo = System.currentTimeMillis(); /*Getting the number of differents classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Inicialization of structures*/ marcas = new boolean[datosTrain.length]; weakness = new int[datosTrain.length]; linea = new Referencia[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { marcas[i] = true; weakness[i] = 0; } nSel = datosTrain.length; /*Body of the POP algorithm. For each attribute, do a resort and mark the instances that are into the intervals that create the proyected classes in this dimension. Finally, the marked instances are eliminated.*/ for (i=0; i<datosTrain[0].length; i++) { /*Proyection to a i dimension*/ if (Attributes.getInputAttribute(i).getType() != Attribute.NOMINAL) { for (j=0; j<datosTrain.length; j++) { linea[j] = new Referencia (j,realTrain[j][i]); } /*Quicksort*/ Arrays.sort(linea); /*Increment the weakness of interior instances*/ for (j=1; j<datosTrain.length-1; j++) { if (clasesTrain[linea[j-1].entero] == clasesTrain[linea[j].entero] && clasesTrain[linea[j+1].entero] == clasesTrain[linea[j].entero]) weakness[linea[j].entero] ++; } } } for (i=0; i<datosTrain[0].length; i++) { /*Proyection to a i dimension*/ if (Attributes.getInputAttribute(i).getType() == Attribute.NOMINAL) { for (j=0; j<Attributes.getInputAttribute(i).getNumNominalValues(); j++) { minWeak = Integer.MAX_VALUE; for (l=0; l<datosTrain.length;l++) { if (nominalTrain[l][i] == j) { if (weakness[l] < minWeak) { minWeak = weakness[l]; } } } for (l=0; l<datosTrain.length;l++) { if (nominalTrain[l][i] == j) { if (weakness[l] > minWeak) { weakness[l]++; } } } } } } for (i=0; i<datosTrain.length; i++) if (weakness[i] == datosTrain[0].length) { marcas[i] = false; nSel--; } /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (i=0, l=0; i<datosTrain.length; i++) { if (marcas[i]) { //the instance will be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[i][j]; conjR[l][j] = realTrain[i][j]; conjN[l][j] = nominalTrain[i][j]; conjM[l][j] = nulosTrain[i][j]; } clasesS[l] = clasesTrain[i]; l++; } } System.out.println("POP "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); } }