/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
//
// POP.java
//
// Salvador Garc�a L�pez
//
// Created by Salvador Garc�a L�pez 28-7-2004.
// Copyright (c) 2004 __MyCompanyName__. All rights reserved.
//
package keel.Algorithms.Preprocess.Instance_Selection.POP;
import keel.Algorithms.Preprocess.Basic.*;
import keel.Dataset.Attribute;
import keel.Dataset.Attributes;
import org.core.*;
import java.util.StringTokenizer;
import java.util.Arrays;
public class POP extends Metodo {
public POP (String ficheroScript) {
super (ficheroScript);
}
public void ejecutar () {
int i, j, l;
int nClases;
double conjS[][];
double conjR[][];
int conjN[][];
boolean conjM[][];
int clasesS[];
int nSel;
boolean marcas[];
int weakness[];
Referencia linea[];
int minWeak;
long tiempo = System.currentTimeMillis();
/*Getting the number of differents classes*/
nClases = 0;
for (i=0; i<clasesTrain.length; i++)
if (clasesTrain[i] > nClases)
nClases = clasesTrain[i];
nClases++;
/*Inicialization of structures*/
marcas = new boolean[datosTrain.length];
weakness = new int[datosTrain.length];
linea = new Referencia[datosTrain.length];
for (i=0; i<datosTrain.length; i++) {
marcas[i] = true;
weakness[i] = 0;
}
nSel = datosTrain.length;
/*Body of the POP algorithm. For each attribute, do a resort and mark the instances that are into the intervals that
create the proyected classes in this dimension. Finally, the marked instances are eliminated.*/
for (i=0; i<datosTrain[0].length; i++) {
/*Proyection to a i dimension*/
if (Attributes.getInputAttribute(i).getType() != Attribute.NOMINAL) {
for (j=0; j<datosTrain.length; j++) {
linea[j] = new Referencia (j,realTrain[j][i]);
}
/*Quicksort*/
Arrays.sort(linea);
/*Increment the weakness of interior instances*/
for (j=1; j<datosTrain.length-1; j++) {
if (clasesTrain[linea[j-1].entero] == clasesTrain[linea[j].entero] && clasesTrain[linea[j+1].entero] == clasesTrain[linea[j].entero])
weakness[linea[j].entero] ++;
}
}
}
for (i=0; i<datosTrain[0].length; i++) {
/*Proyection to a i dimension*/
if (Attributes.getInputAttribute(i).getType() == Attribute.NOMINAL) {
for (j=0; j<Attributes.getInputAttribute(i).getNumNominalValues(); j++) {
minWeak = Integer.MAX_VALUE;
for (l=0; l<datosTrain.length;l++) {
if (nominalTrain[l][i] == j) {
if (weakness[l] < minWeak) {
minWeak = weakness[l];
}
}
}
for (l=0; l<datosTrain.length;l++) {
if (nominalTrain[l][i] == j) {
if (weakness[l] > minWeak) {
weakness[l]++;
}
}
}
}
}
}
for (i=0; i<datosTrain.length; i++)
if (weakness[i] == datosTrain[0].length) {
marcas[i] = false;
nSel--;
}
/*Building of the S set from the flags*/
conjS = new double[nSel][datosTrain[0].length];
conjR = new double[nSel][datosTrain[0].length];
conjN = new int[nSel][datosTrain[0].length];
conjM = new boolean[nSel][datosTrain[0].length];
clasesS = new int[nSel];
for (i=0, l=0; i<datosTrain.length; i++) {
if (marcas[i]) { //the instance will be copied to the solution
for (j=0; j<datosTrain[0].length; j++) {
conjS[l][j] = datosTrain[i][j];
conjR[l][j] = realTrain[i][j];
conjN[l][j] = nominalTrain[i][j];
conjM[l][j] = nulosTrain[i][j];
}
clasesS[l] = clasesTrain[i];
l++;
}
}
System.out.println("POP "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s");
OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation);
OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation);
}
public void leerConfiguracion (String ficheroScript) {
String fichero, linea, token;
StringTokenizer lineasFichero, tokens;
byte line[];
int i, j;
ficheroSalida = new String[2];
fichero = Fichero.leeFichero (ficheroScript);
lineasFichero = new StringTokenizer (fichero,"\n\r");
lineasFichero.nextToken();
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of the training and test files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTraining = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroTest = new String (line,i,j-i);
/*Getting the path and base name of the results files*/
linea = lineasFichero.nextToken();
tokens = new StringTokenizer (linea, "=");
tokens.nextToken();
token = tokens.nextToken();
/*Getting the names of output files*/
line = token.getBytes();
for (i=0; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[0] = new String (line,i,j-i);
for (i=j+1; line[i]!='\"'; i++);
i++;
for (j=i; line[j]!='\"'; j++);
ficheroSalida[1] = new String (line,i,j-i);
}
}