/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet;
import java.util.ArrayList;
import javolution.xml.XmlElement;
import javolution.xml.XmlFormat;
import org.apache.commons.lang.builder.HashCodeBuilder;
/**
* <p>
* @author Written by Pedro Antonio Gutierrez Penya, Aaron Ruiz Mora (University of Cordoba) 17/07/2007
* @version 0.1
* @since JDK1.5
* </p>
*/
public class InputLayer implements ILayer<InputNeuron>{
/**
* <p>
* Input layer of a neural net
* </p>
*/
/////////////////////////////////////////////////////////////////
// ------------------------------------- Marshal/unmarshal format
/////////////////////////////////////////////////////////////////
/**
* <p>
* Marshal/Unmarshal maximum number of neurons and each neuron
* </p>
*/
protected static final javolution.xml.XmlFormat<InputLayer> XML =
new XmlFormat<InputLayer>(InputLayer.class)
{
public void format(InputLayer source, XmlElement xml)
{
// Marshal maxnofneurons
xml.setAttribute("max-n-of-neurons", source.maxnofneurons);
// Marshal each neuron
xml.add(source.neurons, "neurons");
}
public InputLayer parse(XmlElement xml)
{
// Resulting object
InputLayer result = (InputLayer) xml.object();
// Unmarshal maxnofneurons
result.maxnofneurons = xml.getAttribute("max-n-of-neurons", 1);
// Unmarshal each neuron
result.neurons = xml.<ArrayList<InputNeuron>>get("neurons");
// Return result
return result;
}
public String defaultName()
{
return "input-layer";
}
};
/////////////////////////////////////////////////////////////////
// --------------------------------------- Serialization constant
/////////////////////////////////////////////////////////////////
/** Generated by Eclipse */
private static final long serialVersionUID = -4960947669851010992L;
/////////////////////////////////////////////////////////////////
// --------------------------------------------------- Attributes
/////////////////////////////////////////////////////////////////
/** Maximum number of neurons */
protected int maxnofneurons;
/** Array of neurons of the layer */
protected ArrayList<InputNeuron> neurons = new ArrayList<InputNeuron>();
/////////////////////////////////////////////////////////////////
// ------------------------------------------------- Constructors
/////////////////////////////////////////////////////////////////
/**
* Empty constructor
*/
public InputLayer()
{
super();
}
/////////////////////////////////////////////////////////////////
// -------------------------------- Implementing ILayer interface
/////////////////////////////////////////////////////////////////
/**
* <p>
* Returns the maximum number of neurons of this layer
* </p>
* @return int Maximum number of neurons
*/
public int getMaxnofneurons() {
return maxnofneurons;
}
/**
* <p>
* Sets the maximum number of neurons of this layer
* </p>
* @param maxnofneurons Number of neurons
*/
public void setMaxnofneurons(int maxnofneurons) {
this.maxnofneurons = maxnofneurons;
//Remove the neurons
if(neurons!=null)
neurons.clear();
//Generate the neurons
for(int i=0; i<maxnofneurons; i++){
InputNeuron iNeuron = new InputNeuron();
iNeuron.setIndex(i);
addNeuron(iNeuron);
}
}
/**
* <p>
* Add a neuron to the layer
* </p>
* @param neuron New neuron to add to the layer
*/
public void addNeuron(InputNeuron neuron) {
neurons.add(neuron);
}
/**
* <p>
* Returns a neuron of the layer using its index
* </p>
* @param index Index of the neuron
* @return InputNeuron Neuron of the layer
*/
public InputNeuron getNeuron(int index) {
return neurons.get(index);
}
/**
* <p>
* Returns the number of neurons of this layer
* </p>
* @return int Number of neurons
*/
public int getNofneurons() {
return neurons.size();
}
/**
* <p>
* Returns the index of a neuron in the layer
* </p>
* @param neuron Neuron in the layer
* @return int Index of the neuron
*/
public int indexOf(InputNeuron neuron){
return neurons.indexOf(neuron);
}
/**
* <p>
* Checks if this layer is equal to another
* </p>
* @param other Other layer to compare
* @return true if both layers are equal
*/
public boolean equals(ILayer<InputNeuron> other){
if(this.hashCode()!=other.hashCode())
return false;
else
return true;
}
/**
* <p>
* Returns an integer number that identifies the layer
* </p>
* @return int Hashcode
*/
public int hashCode(){
HashCodeBuilder hcb = new HashCodeBuilder(41, 43);
for(INeuron neuron:neurons)
hcb.append(neuron);
return hcb.toHashCode();
}
/////////////////////////////////////////////////////////////////
// ----------------------------------------------- Public methods
/////////////////////////////////////////////////////////////////
/**
* <p>
* Returns a copy of this input layer
* </p>
* @return InputLayer Copy of this input layer
*/
public InputLayer copy(){
// Copy result
InputLayer result = new InputLayer();
// Set max of neurons
result.setMaxnofneurons(this.maxnofneurons);
// Return result
return result;
}
}