/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * File: SPIDER2.java * </p> * * The SPIDER algorithm is an instance selection method used to deal with * the imbalanced problem. * * @author Written by Jose A. Saez (University of Granada) 01/06/2011 * * @version 0.1 * @since JDK1.5 * */ package keel.Algorithms.ImbalancedClassification.Resampling.SPIDER2; import keel.Algorithms.Preprocess.Basic.*; import keel.Dataset.Attribute; import keel.Dataset.Attributes; import keel.Dataset.Instance; import org.core.*; import java.util.Arrays; import java.util.StringTokenizer; public class SPIDER2 extends Metodo { /** * <p> * The SPIDER algorithm is an instance selection method used to deal with * the imbalanced problem. * </p> */ /*Own parameters of the algorithm*/ private int k; private boolean relabel; private String ampl; int _posID, _negID; /** * <p> * Constructor of the class. It configures the execution of the algorithm by * reading the configuration script that indicates the parameters that are * going to be used. * </p> * * @param ficheroScript Name of the configuration script that indicates the * parameters that are going to be used during the execution of the algorithm */ public SPIDER2 (String ficheroScript) { super (ficheroScript); } /** * <p> * The main method of the class that includes the operations of the algorithm. * It includes all the operations that the algorithm has and finishes when it * writes the output information into files. * </p> */ public void run () { int claseObt; boolean safe[]; int nSel = 0; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int nPos = 0; int nNeg = 0; int tmp; int amplify[]; int neighbours[] = null; long tiempo = System.currentTimeMillis(); /*Count of number of positive and negative examples*/ for (int i=0; i<clasesTrain.length; i++) { if (clasesTrain[i] == 0) nPos++; else nNeg++; } if (nPos > nNeg) { tmp = nPos; nPos = nNeg; nNeg = tmp; _posID = 1; _negID = 0; } else { _posID = 0; _negID = 1; } //-------------------------------------------------------------------------- safe = new boolean[datosTrain.length]; Arrays.fill(safe, false); amplify = new int[datosTrain.length]; // number of times to be amplified Arrays.fill(amplify, 1); for(int i = 0 ; i < datosTrain.length ; ++i){ // for each example of the negative class if(clasesTrain[i] == _negID){ /*Apply KNN to the instance*/ claseObt = KNN.evaluacionKNN2 (k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], 2, distanceEu); if (claseObt == clasesTrain[i]) //agree with your majority, it is included in the solution set safe[i] = true; } } //RS = ejemplos de datosTrain de clase mayoritaria y safe = false if(relabel){ //cambiar clase de ejemplos de RS por la minoritaria for(int i = 0 ; i < datosTrain.length ; ++i){ if(clasesTrain[i] == _negID && safe[i] == false){ clasesTrain[i] = _posID; } } } for(int i = 0 ; i < datosTrain.length ; ++i){ // for each example of the positive class if(clasesTrain[i] == _posID){ /*Apply KNN to the instance*/ neighbours = new int[k]; claseObt = evaluationKNN_SPIDER2(k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], 2, distanceEu, neighbours, safe); if (claseObt == clasesTrain[i]) //agree with your majority, it is included in the solution set safe[i] = true; } } if(ampl.equalsIgnoreCase("weak")){ for(int i = 0 ; i < datosTrain.length ; ++i){ if(clasesTrain[i] == _posID && safe[i] == false){ neighbours = new int[k]; int n1 = evaluationKNNClass (k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], 2, distanceEu, neighbours, _negID, safe); neighbours = new int[k]; int n2 = evaluationKNNClass (k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], 2, distanceEu, neighbours, _posID, safe); int n = n1-n2+1;// n� vecinos de la clase mayoritaria (max k) - n� vecinos de la clase minoritaria (max k ) + 1 ; amplify[i] += n; } } } else if(ampl.equalsIgnoreCase("strong")){ for(int i = 0 ; i < datosTrain.length ; ++i){ if(clasesTrain[i] == _posID && safe[i] == false){ neighbours = new int[k+2]; claseObt = evaluationKNN_SPIDER2 (k+2, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], 2, distanceEu, neighbours, safe); if (claseObt == clasesTrain[i]){ neighbours = new int[k]; int n1 = evaluationKNNClass (k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], 2, distanceEu, neighbours, _negID, safe); neighbours = new int[k]; int n2 = evaluationKNNClass (k, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], 2, distanceEu, neighbours, _posID, safe); int n = (n1-n2)+1;// n� vecinos de la clase mayoritaria (max k) - n� vecinos de la clase minoritaria (max k ) + 1 ; amplify[i] += n; } else{ neighbours = new int[k+2]; int n1 = evaluationKNNClass (k+2, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], 2, distanceEu, neighbours, _negID, safe); neighbours = new int[k+2]; int n2 = evaluationKNNClass (k+2, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], 2, distanceEu, neighbours, _posID, safe); int n = n1-n2+1;// n� vecinos de la clase mayoritaria (max k) - n� vecinos de la clase minoritaria (max k ) + 1 ; amplify[i] += n; } } } } //-------------------------------------------------------------------------------------- nSel = 0; for (int i = 0; i < datosTrain.length; i++) { if ((clasesTrain[i] == _posID) || (clasesTrain[i] == _negID && safe[i] == true)) nSel += amplify[i]; } /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; int acumulados = 0; for (int i=0; i<datosTrain.length; ++i) { if ((clasesTrain[i] == _posID) || (clasesTrain[i] == _negID && safe[i] == true)) { //the instance will be copied to the solution for (int t = 0; t < amplify[i] ; t++){ for (int j=0; j<datosTrain[0].length; j++) { conjS[acumulados+t][j] = datosTrain[i][j]; conjR[acumulados+t][j] = realTrain[i][j]; conjN[acumulados+t][j] = nominalTrain[i][j]; conjM[acumulados+t][j] = nulosTrain[i][j]; } clasesS[acumulados+t] = clasesTrain[i]; } acumulados += amplify[i]; } } System.out.println("SPIDER2 "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } /** * <p> * Computes the k nearest neighbors of a given item belonging to a fixed class. * With that neighbors a suggested class for the item is returned. * </p> * * @param nvec Number of nearest neighbors that are going to be searched * @param conj Matrix with the data of all the items in the dataset * @param real Matrix with the data associated to the real attributes of the dataset * @param nominal Matrix with the data associated to the nominal attributes of the dataset * @param nulos Matrix with the data associated to the missing values of the dataset * @param clases Array with the associated class for each item in the dataset * @param ejemplo Array with the data of the specific item in the dataset used * as a reference in the nearest neighbor search * @param ejReal Array with the data of the real attributes of the specific item in the dataset * @param ejNominal Array with the data of the nominal attributes of the specific item in the dataset * @param ejNulos Array with the data of the missing values of the specific item in the dataset * @param nClases Class of the specific item in the dataset * @param distance Kind of distance used in the nearest neighbors computation. * If true the distance used is the euclidean, if false the HVMD distance is used * @param vecinos Array that will have the nearest neighbours id for the current specific item * @param clase Class of the neighbours searched for the item * @return the majority class for all the neighbors of the item */ public int evaluationKNNClass (int nvec, double conj[][], double real[][], int nominal[][], boolean nulos[][], int clases[], double ejemplo[], double ejReal[], int ejNominal[], boolean ejNulos[], int nClases, boolean distance, int vecinos[], int clase, boolean[] isSafe) { int i, j, l; boolean parar = false; int vecinosCercanos[]; double minDistancias[]; int votos[]; double dist; if (nvec > conj.length) nvec = conj.length; votos = new int[nClases]; vecinosCercanos = new int[nvec]; minDistancias = new double[nvec]; for (i=0; i<nvec; i++){ vecinosCercanos[i] = -1; minDistancias[i] = Double.POSITIVE_INFINITY; } for (i=0; i<conj.length; i++) { if(isSafe[i] || clases[i] == _posID){ dist = KNN.distancia(conj[i], real[i], nominal[i], nulos[i], ejemplo, ejReal, ejNominal, ejNulos, distance); if (dist > 0) { parar = false; for (j = 0; j < nvec && !parar; j++) { if (dist < minDistancias[j]) { parar = true; for (l = nvec - 1; l >= j+1; l--) { minDistancias[l] = minDistancias[l - 1]; vecinosCercanos[l] = vecinosCercanos[l - 1]; } minDistancias[j] = dist; vecinosCercanos[j] = i; } } } } } for (j=0; j<nClases; j++) { votos[j] = 0; } for (j=0; j<nvec; j++) { if (vecinosCercanos[j] >= 0) votos[clases[vecinosCercanos[j]]]++; } for (i=0; i<vecinosCercanos.length; i++) vecinos[i] = vecinosCercanos[i]; return votos[clase]; } public int evaluationKNN_SPIDER2 (int nvec, double conj[][], double real[][], int nominal[][], boolean nulos[][], int clases[], double ejemplo[], double ejReal[], int ejNominal[], boolean ejNulos[], int nClases, boolean distance, int vecinos[], boolean[] isSafe) { int i, j, l; boolean parar = false; int vecinosCercanos[]; double minDistancias[]; int votos[]; double dist; int votada, votaciones; if (nvec > conj.length) nvec = conj.length; votos = new int[nClases]; vecinosCercanos = new int[nvec]; minDistancias = new double[nvec]; for (i=0; i<nvec; i++){ vecinosCercanos[i] = -1; minDistancias[i] = Double.POSITIVE_INFINITY; } for (i=0; i<conj.length; i++) { if(isSafe[i] || clases[i] == _posID){ dist = KNN.distancia(conj[i], real[i], nominal[i], nulos[i], ejemplo, ejReal, ejNominal, ejNulos, distance); if (dist > 0) { parar = false; for (j = 0; j < nvec && !parar; j++) { if (dist < minDistancias[j]) { parar = true; for (l = nvec - 1; l >= j+1; l--) { minDistancias[l] = minDistancias[l - 1]; vecinosCercanos[l] = vecinosCercanos[l - 1]; } minDistancias[j] = dist; vecinosCercanos[j] = i; } } } } } for (j=0; j<nClases; j++) { votos[j] = 0; } for (j=0; j<nvec; j++) { if (vecinosCercanos[j] >= 0) votos[clases[vecinosCercanos[j]]] ++; } votada = 0; votaciones = votos[0]; for (j=1; j<nClases; j++) { if (votaciones < votos[j]) { votaciones = votos[j]; votada = j; } } for (i=0; i<vecinosCercanos.length; i++) vecinos[i] = vecinosCercanos[i]; return votada; } /** * <p> * Obtains the parameters used in the execution of the algorithm and stores * them in the private variables of the class * </p> * * @param ficheroScript Name of the configuration script that indicates the * parameters that are going to be used during the execution of the algorithm */ public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; /*Getting the relabeling option*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); relabel = tokens.nextToken().substring(1).equalsIgnoreCase("true")?true:false; /*Getting the ampl option*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); ampl = tokens.nextToken().substring(1); } }