/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // DROP2.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 16-7-2004. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.DROP2; import keel.Algorithms.Preprocess.Basic.*; import keel.Dataset.*; import org.core.*; import java.util.StringTokenizer; import java.util.Vector; import java.util.Arrays; public class DROP2 extends Metodo { /*Own parameters of the algorithm*/ private int k; public DROP2 (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m, n, o; int nClases; int claseObt; boolean marcas[]; int nSel; double conjS[][]; int clasesS[]; int vecinos[][]; Vector asociados[]; int aciertosSin; int vecinosTemp[]; double distTemp[]; double dist, bestD; boolean parar; Referencia orden[]; int temp1; double temp2; int mayoria; long tiempo = System.currentTimeMillis(); /*Getting the number of different classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /*Building a instance vector with distances to the nearest enemy*/ orden = new Referencia[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { bestD = Double.POSITIVE_INFINITY; for (j=0; j<datosTrain.length; j++) { if (clasesTrain[i] != clasesTrain[j]) { dist = KNN.distancia (datosTrain[i], datosTrain[j]); if (dist < bestD) bestD = dist; } } orden[i] = new Referencia (i, bestD); } /*Sort the previos vector*/ Arrays.sort(orden); /*Inicialization of the instance flagged vector of S set*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { marcas[i] = true; } nSel = datosTrain.length; /*Inicialization of data structures of neighbors and associates*/ distTemp = new double[k+1]; vecinosTemp = new int[k+1]; vecinos = new int[datosTrain.length][k+1]; asociados = new Vector[datosTrain.length]; for (i=0; i<datosTrain.length; i++) asociados[i] = new Vector (); /*Body of the DROP2 algorithm. It calculates, for each instance, a set of associates instances and look if the deletion of the main instance produces a change of accuracy in those associates*/ for (i=0; i<datosTrain.length; i++) { /*Calculate the k+1 nearest neighbors of each instance*/ KNN.evaluacionKNN2 (k+1, datosTrain, clasesTrain, datosTrain[i], nClases, vecinos[i]); for (j=0; j<vecinos[i].length; j++) { asociados[vecinos[i][j]].addElement (new Referencia (i,0)); } } /*Check if delete or not the instancias considering the WITH and WITHOUT sets*/ for (o=0; o<datosTrain.length; o++){ i = orden[o].entero; aciertosSin = 0; marcas[i] = false; nSel--; /*Construction of S set from the temporal flags*/ conjS = new double[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will evaluate for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } marcas[i] = true; nSel++; /*Evaluation of associates without the instance in T*/ for (j=0; j<k+1; j++) { claseObt = KNN.evaluacionKNN2 (k, conjS, clasesS, datosTrain[vecinos[i][j]], nClases); if (claseObt == clasesTrain[vecinos[i][j]]) //it classify it correctly aciertosSin++; } mayoria = (k+1) / 2; if (aciertosSin > mayoria) { /*Delete P of S*/ marcas[i] = false; nSel--; /*For each associate of P, search a new nearest neighbor*/ for (j=0; j<asociados[i].size(); j++) { for (l=0; l<k+1; l++) { vecinosTemp[l] = vecinos[((Referencia)(asociados[i].elementAt(j))).entero][l]; vecinos[((Referencia)(asociados[i].elementAt(j))).entero][l] = -1; distTemp[l] = Double.POSITIVE_INFINITY; } for (l=0; l<datosTrain.length; l++) { if (marcas[l]) { //is in S dist = KNN.distancia (datosTrain[((Referencia)(asociados[i].elementAt(j))).entero],datosTrain[l]); parar = false; /*Get the nearest neighbors in this situation again*/ for (m=0; m<(k+1) && !parar; m++) { if (dist < distTemp[m]) { parar = true; for (n=m+1; n<k+1; n++) { distTemp[n] = distTemp[n-1]; vecinos[((Referencia)(asociados[i].elementAt(j))).entero][n] = vecinos[((Referencia)(asociados[i].elementAt(j))).entero][n-1]; } distTemp[m] = dist; vecinos[((Referencia)(asociados[i].elementAt(j))).entero][m] = l; } } } } /*Add to the list of associates of the new neighbor this instance*/ for (l=0; l<k+1; l++) { parar = false; for (m=0; m<asociados[vecinosTemp[l]].size() && !parar; m++) { if (((Referencia)(asociados[vecinosTemp[l]].elementAt(m))).entero == ((Referencia)(asociados[i].elementAt(j))).entero && vecinosTemp[l] != i) { asociados[vecinosTemp[l]].removeElementAt(m); parar = true; } } } for (l=0; l<k+1; l++) { asociados[vecinos[((Referencia)(asociados[i].elementAt(j))).entero][l]].addElement(new Referencia (((Referencia)(asociados[i].elementAt(j))).entero,0)); } } } } /*Construction of S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will evaluate for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } System.out.println("DROP2 "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjS, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); } }