/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /* * NumericalDerivative.java * * Copyright (C) 2002-2006 Alexei Drummond and Andrew Rambaut * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package keel.Algorithms.Preprocess.Missing_Values.EM.util; /** * approximates numerically the first and second derivatives of a * function of a single variable and approximates gradient and * diagonal of Hessian for multivariate functions * * Known bugs and limitations: * - the sparse number of function evaluations used can potentially * * @author Korbinian Strimmer */ public class NumericalDerivative { // // Public stuff // /** * determine first derivative * * @param f univariate function * @param x argument * * @return first derivate at x */ public static double firstDerivative(UnivariateFunction f, double x) { double h = MachineAccuracy.SQRT_EPSILON*(Math.abs(x) + 1.0); // Centered first derivative return (f.evaluate(x + h) - f.evaluate(x - h))/(2.0*h); } /** * determine second derivative * * @param f univariate function * @param x argument * * @return second derivate at x */ public static double secondDerivative(UnivariateFunction f, double x) { double h = MachineAccuracy.SQRT_SQRT_EPSILON*(Math.abs(x) + 1.0); // Centered second derivative return (f.evaluate(x + h) - 2.0*f.evaluate(x) + f.evaluate(x - h))/(h*h); } /** * determine gradient * * @param f multivariate function * @param x argument vector * * @return gradient at x */ public static double[] gradient(MultivariateFunction f, double[] x) { double[] result = new double[x.length]; gradient(f, x, result); return result; } /** * determine gradient * * @param f multivariate function * @param x argument vector * @param grad vector for gradient */ public static void gradient(MultivariateFunction f, double[] x, double[] grad) { for (int i = 0; i < f.getNumArguments(); i++) { double h = MachineAccuracy.SQRT_EPSILON*(Math.abs(x[i]) + 1.0); double oldx = x[i]; x[i] = oldx + h; double fxplus = f.evaluate(x); x[i] = oldx - h; double fxminus = f.evaluate(x); x[i] = oldx; // Centered first derivative grad[i] = (fxplus-fxminus)/(2.0*h); } } /** * determine diagonal of Hessian * * @param f multivariate function * @param x argument vector * * @return vector with diagonal entries of Hessian */ public static double[] diagonalHessian(MultivariateFunction f, double[] x) { int len = f.getNumArguments(); double[] result = new double[len]; for (int i = 0; i < len; i++) { double h = MachineAccuracy.SQRT_SQRT_EPSILON*(Math.abs(x[i]) + 1.0); double oldx = x[i]; x[i] = oldx + h; double fxplus = f.evaluate(x); x[i] = oldx - h; double fxminus = f.evaluate(x); x[i] = oldx; double fx = f.evaluate(x); // Centered second derivative result[i] = (fxplus - 2.0*fx + fxminus)/(h*h); } return result; } }