/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Antonio Alejandro Tortosa (University of Granada) 01/07/2008 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 12/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Rule_Learning.C45Rules; public class Utilities { /** * <p> * Collection of auxiliar methods. * </p> */ /** The natural logarithm of 2. */ private static double log2_cte = Math.log(2); /** * Mergesort algorithm for an array of long integers. * @param theArray long[] the Array to sort * @param nElems int size of theArray */ public static void mergeSort(long[] theArray,int nElems){ // provides workspace long[] workSpace = new long[nElems]; recMergeSort(theArray, workSpace, 0, nElems-1); } //------------------------------PRIVATE METHODS--------------------------------------------------/ static private void recMergeSort(long[] theArray,long[] workSpace, int lowerBound,int upperBound){ if(lowerBound == upperBound) // if range is 1, return; // no use sorting else { // find midpoint int mid = (lowerBound+upperBound) / 2; // sort low half recMergeSort(theArray,workSpace, lowerBound, mid); // sort high half recMergeSort(theArray,workSpace, mid+1, upperBound); // merge them merge(theArray,workSpace, lowerBound, mid+1, upperBound); } // end else } // end recMergeSort() //----------------------------------------------------------- static private void merge(long[] theArray,long[] workSpace, int lowPtr,int highPtr, int upperBound){ int j = 0; // workspace index int lowerBound = lowPtr; int mid = highPtr-1; int n = upperBound-lowerBound+1; // # of items while(lowPtr <= mid && highPtr <= upperBound) if( theArray[lowPtr] < theArray[highPtr] ) workSpace[j++] = theArray[lowPtr++]; else workSpace[j++] = theArray[highPtr++]; while(lowPtr <= mid) workSpace[j++] = theArray[lowPtr++]; while(highPtr <= upperBound) workSpace[j++] = theArray[highPtr++]; for(j=0; j<n; j++) theArray[lowerBound+j] = workSpace[j]; } /*************************END OF THE FIRST METHOD*******************************/ /** * Mergesort algorithm for an array of long integers. * @param theArray double[] the Array to sort * @param nElems int size of theArray */ public static void mergeSort(double[] theArray,int nElems){ // provides workspace double[] workSpace = new double[nElems]; recMergeSort(theArray, workSpace, 0, nElems-1); } //------------------------------PRIVATE METHODS--------------------------------------------------/ static private void recMergeSort(double[] theArray,double[] workSpace, int lowerBound,int upperBound){ if(lowerBound == upperBound) // if range is 1, return; // no use sorting else { // find midpoint int mid = (lowerBound+upperBound) / 2; // sort low half recMergeSort(theArray,workSpace, lowerBound, mid); // sort high half recMergeSort(theArray,workSpace, mid+1, upperBound); // merge them merge(theArray,workSpace, lowerBound, mid+1, upperBound); } // end else } // end recMergeSort() //----------------------------------------------------------- static private void merge(double[] theArray,double[] workSpace, int lowPtr,int highPtr, int upperBound){ int j = 0; // workspace index int lowerBound = lowPtr; int mid = highPtr-1; int n = upperBound-lowerBound+1; // # of items while(lowPtr <= mid && highPtr <= upperBound) if( theArray[lowPtr] < theArray[highPtr] ) workSpace[j++] = theArray[lowPtr++]; else workSpace[j++] = theArray[highPtr++]; while(lowPtr <= mid) workSpace[j++] = theArray[lowPtr++]; while(highPtr <= upperBound) workSpace[j++] = theArray[highPtr++]; for(j=0; j<n; j++) theArray[lowerBound+j] = workSpace[j]; } /*************************END OF THE SECOND METHOD*******************************/ /** * Returns the logarithm of a for base 2. * * @param a a double * @return the logarithm for base 2 */ public static double log2(double a) { return Math.log(a) / log2_cte; } }