/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.RE_SL_Methods.mogulHC;
class BaseD {
public Difuso[][] BaseDatos;
public int n_variables;
public int[] n_etiquetas;
public double[] S;
public TipoIntervalo[] extremos;
public TipoIntervalo[][][] intervalos;
public BaseD(int MaxEtiquetas, int n_var) {
int i, j, k;
n_variables = n_var;
intervalos = new TipoIntervalo[n_variables][MaxEtiquetas][3];
BaseDatos = new Difuso[n_variables][MaxEtiquetas];
for (i = 0; i < n_variables; i++) {
BaseDatos[i] = new Difuso[MaxEtiquetas];
intervalos[i] = new TipoIntervalo[MaxEtiquetas][3];
for (j = 0; j < MaxEtiquetas; j++) {
BaseDatos[i][j] = new Difuso();
intervalos[i][j] = new TipoIntervalo[3];
for (k = 0; k < 3; k++) {
intervalos[i][j][k] = new TipoIntervalo();
}
}
}
n_etiquetas = new int[n_variables];
S = new double[n_variables];
extremos = new TipoIntervalo[n_variables];
for (i = 0; i < n_variables; i++) {
extremos[i] = new TipoIntervalo();
}
}
/** Rounds the generated value for the semantics */
public double Asigna(double val, double tope) {
if ( (val > -1E-4) && (val < 1E-4)) {
return (0);
}
if ( (val > tope - 1E-4) && (val < tope + 1E-4)) {
return (tope);
}
return (val);
}
/** Generates the semantics of the linguistic variables with triangular fuzzy sets and the mutation intervals to mutate */
public void Semantica() {
int var, etq;
double marca, valor;
double[] punto = new double[3];
double[] punto_medio = new double[2];
/* we generate the fuzzy partitions of the variables */
for (var = 0; var < n_variables; var++) {
marca = (extremos[var].max - extremos[var].min) /
( (double) n_etiquetas[var] - 1);
//System.out.println("Max: " + extremos[var].max + " Min: " +extremos[var].min);
//System.out.println("Marca: " + marca + " Netiquetas: " + n_etiquetas[var]);
for (etq = 0; etq < n_etiquetas[var]; etq++) {
valor = extremos[var].min + marca * (etq - 1);
BaseDatos[var][etq].x0 = Asigna(valor, extremos[var].max);
valor = extremos[var].min + marca * etq;
BaseDatos[var][etq].x1 = Asigna(valor, extremos[var].max);
BaseDatos[var][etq].x2 = BaseDatos[var][etq].x1;
valor = extremos[var].min + marca * (etq + 1);
BaseDatos[var][etq].x3 = Asigna(valor, extremos[var].max);
BaseDatos[var][etq].y = 1;
BaseDatos[var][etq].Nombre = "V" + (var + 1);
BaseDatos[var][etq].Etiqueta = "E" + (etq + 1);
}
}
/* we generate the mutation intervals for each gene */
for (var = 0; var < n_variables; var++) {
for (etq = 0; etq < n_etiquetas[var]; etq++) {
punto[0] = BaseDatos[var][etq].x0;
punto[1] = BaseDatos[var][etq].x1;
punto[2] = BaseDatos[var][etq].x3;
punto_medio[0] = (punto[1] - punto[0]) / 2.0;
punto_medio[1] = (punto[2] - punto[1]) / 2.0;
intervalos[var][etq][0].min = punto[0] - punto_medio[0];
intervalos[var][etq][0].max = punto[0] + punto_medio[0];
intervalos[var][etq][1].min = punto[1] - punto_medio[0];
intervalos[var][etq][1].max = punto[1] + punto_medio[1];
intervalos[var][etq][2].min = punto[2] - punto_medio[1];
intervalos[var][etq][2].max = punto[2] + punto_medio[1];
}
}
/* Inicialization of the vector of values for adapting the generic sigma of the ES */
for (var = 0; var < n_variables; var++) {
S[var] = (BaseDatos[var][0].x1 - BaseDatos[var][0].x0) / 4.0;
}
}
/** DB to String */
public String BDtoString() {
int i, j;
String cadena = "";
for (i = 0; i < n_variables; i++) {
cadena += " Variable " + (i + 1) + ":\n";
for (j = 0; j < n_etiquetas[i]; j++) {
cadena += " Label " + (j + 1) + ": (" + BaseDatos[i][j].x0 + "," +
BaseDatos[i][j].x1 + "," + BaseDatos[i][j].x3 + ")\n";
}
cadena += "\n";
}
return (cadena);
}
}