/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier.*; import keel.Algorithms.Shared.Exceptions.*; /** * Class for management of genetic individuals in classification. * Need: the examples with the class, the classifier and a variable for results * <p> * @author Written by Luciano S�nchez (University of Oviedo) 20/01/2004 * @author Modified by M.R. Su�rez (University of Oviedo) 18/12/2008 * @author Modified by Enrique A. de la Cal (University of Oviedo) 21/12/2008 * @version 1.0 * @since JDK1.5 * </p> */ public abstract class GeneticIndividualForClassification extends GeneticIndividual { protected static double[][] X; protected static int[] C; protected Classifier c; protected static int[]Co; /** * <p> * Constructor. Initialize the type of fitness * @param tf The type of fitness */ public GeneticIndividualForClassification(int tf) { super(tf); } /** * <p> * This method calculate the classification error using the examples set * </p> * @return The classification error * @throws invalidFitness Message if error */ public double fitness() throws invalidFitness { if (fitnessType != STANDARD) throw new invalidFitness("Fitness no valido"); // Classification error is calculated using the samples set double classificationError=0; for (int i=0;i<X.length;i++) { Co[i]=c.getMaximum(X[i]); if (Co[i] != C[i]) classificationError++; } classificationError/=X.length; return classificationError; } /** * <p> * This method is for debug * </p> */ public void debug() { g.debug(); c.debug(); } /** * <p> * This method return the result of classification * </p> * @return The result of classification */ public int[] getCo() { return Co; } /** * <p> * This method initialize the examples and create a new classifier * </p> * @param pX The set of examples * @param pC The sets of classes */ public void setExamples(double[][] pX, int[] pC) { X=pX; C=pC; Co=new int[pC.length]; } }