/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.RE_SL_Postprocess.TSKLocalTunRules; import java.io.*; import org.core.*; import java.util.*; import java.lang.Math; class AG { public double prob_cruce, prob_mutacion, a, b; public int Mu_next, Trials; public double Best_current_perf, porc_pob_ee; public int Best_guy; public int long_poblacion, n_genes, primer_gen_C2; public int n_gen_ee; public static double S_sigma_consecuentes = 0.00001; public static double c = 0.9; /*0.817*/ public int [] sample; public int [] indices_ordenacion; public int last; public Structure [] Old; public Structure [] New; public Structure [] C; public Structure [] temp; public Structure [] YaExplotados; public Structure Hijo; public TipoIntervalo [] intervalos; private TipoIntervalo intervalo_mut; public Adap fun_adap; public BaseR base_reglas; public AG (int n_poblacion, double cruce, double mutacion, double valor_a, double valor_b, double porc_pob_ee11, int gen_ee, Adap funcion, BaseR base) { int i; base_reglas = base; fun_adap = funcion; long_poblacion = n_poblacion; prob_cruce = cruce; prob_mutacion = mutacion; a = valor_a; b = valor_b; porc_pob_ee = porc_pob_ee11; n_gen_ee = gen_ee; n_genes = (3 * base_reglas.tabla.n_var_estado + base_reglas.tabla.n_variables) * base_reglas.n_reglas; prob_mutacion = prob_mutacion / (double) n_genes; Old = new Structure[long_poblacion]; New = new Structure[long_poblacion]; YaExplotados = new Structure[long_poblacion]; for (i=0; i<long_poblacion; i++) { Old[i] = new Structure(n_genes); New[i] = new Structure(n_genes); YaExplotados[i] = new Structure(n_genes); } Hijo = new Structure(n_genes); sample = new int [long_poblacion]; indices_ordenacion = new int [long_poblacion]; intervalo_mut = new TipoIntervalo(); intervalos = new TipoIntervalo[n_genes]; for (i=0; i<n_genes; i++) intervalos[i] = new TipoIntervalo(); C = new Structure[4]; for (i=0; i<4; i++) C[i] = new Structure(n_genes); } private int ceil (double v) { int valor; valor = (int) Math.round(v); if ((double)valor < v) valor++; return (valor); } public void Intercambio () { temp = Old; Old = New; New = temp; } /** Inicialization of the population */ public void Initialize () { int i, j, temp, mitad_Pob; double Valor_Inicial_Sigma = 0.001; if (prob_mutacion < 1.0) Mu_next = ceil (Math.log(Randomize.Rand()) / Math.log(1.0 - prob_mutacion)); else Mu_next = 1; Trials=0; /* Los conjuntos difusos de los antecedentes de las reglas constituyen la primera parte del primer cromosoma de la poblacion inicial. Se inicializa C1 en el primer cromosoma. */ New[0].n_e = 1; primer_gen_C2 = 0; for (i=0; i<base_reglas.n_reglas; i++) { for (j=0; j<base_reglas.tabla.n_var_estado; j++) { New[0].Gene[primer_gen_C2] = base_reglas.BaseReglas[i].Ant[j].x0; New[0].Gene[primer_gen_C2+1] = base_reglas.BaseReglas[i].Ant[j].x1; New[0].Gene[primer_gen_C2+2] = base_reglas.BaseReglas[i].Ant[j].x3; primer_gen_C2 += 3; } } /* Se establecen los intervalos en los que varia cada gen de la primera parte en la primera generacion */ for (i=0; i<primer_gen_C2; i+=3) { intervalos[i].min = New[0].Gene[i] - (New[0].Gene[i+1]-New[0].Gene[i])/2.0; intervalos[i].max = New[0].Gene[i] + (New[0].Gene[i+1]-New[0].Gene[i])/2.0; intervalos[i+1].min = New[0].Gene[i+1] - (New[0].Gene[i+1]-New[0].Gene[i])/2.0; intervalos[i+1].max = New[0].Gene[i+1] + (New[0].Gene[i+2]-New[0].Gene[i+1])/2.0; intervalos[i+2].min = New[0].Gene[i+2] - (New[0].Gene[i+2]-New[0].Gene[i+1])/2.0; intervalos[i+2].max = New[0].Gene[i+2] + (New[0].Gene[i+2]-New[0].Gene[i+1])/2.0; } /* Se inicializa la segunda parte del primer cromosoma con los parametros de los consecuentes de las reglas de la BC inicial, junto con los inter- valos correspondientes */ for (i=0; i<base_reglas.n_reglas; i++) { for (j=0; j<base_reglas.tabla.n_variables; j++) { temp = primer_gen_C2 + i * (base_reglas.tabla.n_variables) + j; New[0].Gene[temp] = Math.atan (base_reglas.BaseReglas[i].Cons[j]); intervalos[temp].min = -(Math.PI/2) + 1E-10; intervalos[temp].max = (Math.PI/2) - 1E-10; } } /* Se genera la segunda mitad de la poblacion inicial generando aleatoriamen- te C1 y manteniendo C2 */ mitad_Pob = ceil(long_poblacion/2); for (i=1; i<mitad_Pob; i++) { for (j=0; j<primer_gen_C2; j++) New[i].Gene[j] = Randomize.Randdouble(intervalos[j].min, intervalos[j].max); for (j=primer_gen_C2; j<n_genes; j++) New[i].Gene[j] = New[0].Gene[j]; New[i].n_e = 1; } /* Se genera el resto de la poblacion inicial generando aleatoriamente C1 a partir de los intervalos anteriores y mutando C2 */ for (i=mitad_Pob; i<long_poblacion; i++) { for (j=0; j<primer_gen_C2; j++) New[i].Gene[j] = Randomize.Randdouble(intervalos[j].min,intervalos[j].max); for (j=primer_gen_C2; j<n_genes; j++) /* Comprobamos que no se salgan del intervalo permitido [-PI/2,PI/2] */ do New[i].Gene[j] = New[0].Gene[j] + ValorNormal (Valor_Inicial_Sigma); while (New[i].Gene[j]<=-(Math.PI/2) || New[i].Gene[j]>=(Math.PI/2)); New[i].n_e=1; } } /* Selection based on the Baker's Estocastic Universal Sampling */ void Select() { double expected, factor, perf, ptr, sum, rank_max, rank_min; int i, j, k, best, temp; rank_min = 0.75; /* we assign the ranking to each element: The best: ranking = long_poblacion-1 The worse: ranking = 0 */ for (i=0; i<long_poblacion; i++) Old[i].n_e = 0; /* we look for the best ordered non element */ for (i=0; i<long_poblacion-1; i++) { best = -1; perf = 0.0; for (j=0; j<long_poblacion; j++) { if ((Old[j].n_e==0) && (best==-1 || Old[j].Perf < perf)) { perf = Old[j].Perf; best = j; } } /* we assign the ranking */ Old[best].n_e = long_poblacion - 1 - i; } /* we normalize the ranking */ rank_max = 2.0 - rank_min; factor = (rank_max-rank_min)/(double)(long_poblacion-1); /* we assign the number of replicas of each chormosome according to the select probability */ k = 0; ptr = Randomize.Rand (); for (sum = i = 0; i<long_poblacion; i++) { expected = rank_min + Old[i].n_e * factor; for (sum += expected; sum>=ptr; ptr++) sample[k++] = i; } /* we complete the population if necessary */ if (k != long_poblacion) { for (;k<long_poblacion; k++) sample[k]=Randomize.RandintClosed (0,long_poblacion-1); } /* we shuffle the selected chromosomes */ for (i=0; i<long_poblacion; i++) { j = Randomize.RandintClosed (i, long_poblacion-1); temp = sample[j]; sample[j] = sample[i]; sample[i] = temp; } /* we create the new population */ for (i=0; i<long_poblacion; i++) { k = sample[i]; for (j=0; j<n_genes; j++) New[i].Gene[j] = Old[k].Gene[j]; New[i].Perf = Old[k].Perf; New[i].n_e = 0; } } private double T_producto_logico (double x ,double y) { if (x<y) return (x); else return (y); } private double S_suma_logica (double x ,double y) { if (x>y) return (x); else return (y); } private double Promedio1 (double x, double y, double p) { return (p*x + (1-p)*y); } /** Max-Min-Aritmetical Crossover */ public void Max_Min_Crossover () { int mom, dad, i, j, temp; int [] indice = new int[4]; for (mom=0; mom<last; mom+=2) { dad = mom + 1; for (i=0; i<n_genes; i++) { /* we obtain 4 offsprings: appling the t-norma, the t-conorma and 2 the average function */ C[0].Gene[i] = T_producto_logico (New[mom].Gene[i], New[dad].Gene[i]); C[1].Gene[i] = S_suma_logica (New[mom].Gene[i], New[dad].Gene[i]); C[2].Gene[i] = Promedio1 (New[mom].Gene[i], New[dad].Gene[i], a); C[3].Gene[i] = Promedio1 (New[mom].Gene[i], New[dad].Gene[i], 1.0 - a); } /* Evaluation of the 4 offsprings */ C[0].Perf = fun_adap.eval (C[0].Gene); C[1].Perf = fun_adap.eval (C[1].Gene); C[2].Perf = fun_adap.eval (C[2].Gene); C[3].Perf = fun_adap.eval (C[3].Gene); /* we order the offsprings by means of the bubble method */ for (i=0; i<4; i++) indice[i]=i; for (i=0; i<4; i++) for (j=0; j<3-i; j++) if (C[indice[j+1]].Perf < C[indice[j]].Perf) { temp = indice[j]; indice[j] = indice[j+1]; indice[j+1] = temp; } for (i=0; i<n_genes; i++) { New[mom].Gene[i] = C[indice[0]].Gene[i]; New[dad].Gene[i] = C[indice[1]].Gene[i]; } /* we update the fitness of the offsprings */ New[mom].Perf = C[indice[0]].Perf; New[dad].Perf = C[indice[1]].Perf; New[mom].n_e = 0; New[dad].n_e = 0; Trials += 2; } } private double delta (long t, double y, long n_generaciones) { double r, potencia, subtotal, sub; r = Randomize.Rand(); sub = 1.0 - (double)t / (double)n_generaciones; potencia = Math.pow (sub, (double)b); subtotal = Math.pow (r, potencia); return (y * (1.0 - subtotal)); } /** Mutation Non Uniform */ public void Mutacion_No_Uniforme (long Gen, long n_generaciones) { int posiciones, i, j; double nval, m; posiciones = n_genes * long_poblacion; if (prob_mutacion>0) { while (Mu_next<posiciones) { /* we determinate the chromosome and the gene */ i = Mu_next / n_genes; j = Mu_next % n_genes; /* Se determinan los intervalos de mutacion de ese gen y se calcula el valor mutado */ if (j >= primer_gen_C2) { /* Consecuente: muta en [-PI/2,PI/2] */ intervalo_mut.min = intervalos[j].min; intervalo_mut.max = intervalos[j].max; } else { switch (j%3) { case 0: /* Punto izquierdo: muta en [intervalos[j].min,cromosoma[j+1]] */ intervalo_mut.min = intervalos[j].min; intervalo_mut.max = New[i].Gene[j+1]; break; case 1: /* Punto central: muta en [cromosoma[j-1],cromosoma[j+1]] */ intervalo_mut.min = New[i].Gene[j-1]; intervalo_mut.max = New[i].Gene[j+1]; break; case 2: /* Punto derecho: muta en [cromosoma[j-1],intervalos[j].max] */ intervalo_mut.min = New[i].Gene[j-1]; intervalo_mut.max = intervalos[j].max; break; } } /* we mutate the gene */ if (Randomize.Rand()<0.5) nval = New[i].Gene[j] + delta (Gen, intervalo_mut.max - New[i].Gene[j], n_generaciones); else nval=New[i].Gene[j] - delta (Gen, New[i].Gene[j] - intervalo_mut.min, n_generaciones); New[i].Gene[j] = nval; New[i].n_e = 1; /* we calculate the next position */ if (prob_mutacion<1) { m = Randomize.Rand(); Mu_next += ceil (Math.log(m)/Math.log(1.0-prob_mutacion)); } else Mu_next+=1; } Mu_next -= posiciones; } } /** Fitness Function */ void Evaluate() { double performance; int i, j; for (i=0; i<long_poblacion; i++) { /* if the chromosome aren't evaluated, it's evaluate */ if (New[i].n_e == 1) { New[i].Perf = fun_adap.eval (New[i].Gene); performance = New[i].Perf; New[i].n_e = 0; Trials++; /* we increment the number of evaluated chromosomes */ } else performance = New[i].Perf; /* we calculate the position of the best individual */ if (i == 0) { Best_current_perf = performance; Best_guy = 0; } else if (performance < Best_current_perf) { Best_current_perf = performance; Best_guy = i; } } } /* Elitist selection */ void Elitist () { int i, k, found; /* if the best individual of the old population aren't in the new population, we remplace the last individual for this */ for (i=0, found=0; i<long_poblacion && (found==0); i++) for (k=0, found=1; (k<n_genes) && (found==1); k++) if (New[i].Gene[k] != Old[Best_guy].Gene[k]) found = 0; if (found == 0) { for (k=0; k<n_genes; k++) New[long_poblacion-1].Gene[k] = Old[Best_guy].Gene[k]; New[long_poblacion-1].Perf = Old[Best_guy].Perf; New[long_poblacion-1].n_e = 0; } } /** Returns the best solution*/ public double [] solucion () { return (New[Best_guy].Gene); } /** Returns the fitness of the best solution */ public double solucion_ec () { return (New[Best_guy].Perf); } /** Returns 1 if the best current rule is in the list "L" yet */ private int Pertenece_AG (Structure C, Structure [] L, int n_explotados) { int crom, gen, esta; crom=0; while (crom<n_explotados) { esta = 1; gen = 0; while (gen<n_genes && esta==1) { if (C.Gene[gen] != L[crom].Gene[gen]) esta = 0; else gen++; } if (esta==1) return (1); crom++; } return (0); } /** Calculates the new value of sigma according to the number of mutation with hit*/ private double AdaptacionSigma (double old_sigma, double p, double n) { /* if p<1/5, sigma lowers (c<1 -> sigma*c^(1/n)<sigma) */ if (p < 0.2) return (old_sigma*Math.pow (c,1.0 / n)); /* if p>1/5, sigma increases (c<1 -> sigma/c^(1/n)>sigma)*/ if (p > 0.2) return (old_sigma / Math.pow (c, 1.0 / n)); /* if p=1/5, sigma doesn't change*/ return (old_sigma); } /** Generates a normal value with hope 0 and tipical deviation "desv */ private double ValorNormal (double desv) { double u1, u2; /* we generate 2 uniform values [0,1] */ u1 = Randomize.Rand (); u2 = Randomize.Rand (); /* we calcules a normal value with the uniform values */ return (desv * Math.sqrt (-2 * Math.log(u1)) * Math.sin (2*Math.PI*u2)); } /** Evolution Strategy (1+1) */ void EE_1_1 (Structure Padre, int Muta_C1, int Muta_C2) { int j, gen, n_mutaciones, n_exitos, it_sin_exito, fin; double x0, x1, x2, newx1, newx, S, m, sigma, new_sigma; /* Inicialization of the counters */ n_mutaciones = n_exitos = it_sin_exito = fin=0; sigma = new_sigma = 1.0; do { if (Muta_C1==1) { /* Mutation of C1 */ for (gen=0; gen<primer_gen_C2; gen+=3) { /* we obtain the fuzzy set */ x0 = Padre.Gene[gen]; x1 = Padre.Gene[gen+1]; x2 = Padre.Gene[gen+2]; /* Adaptation of S and mutation of the center point */ S = Adap.Minimo (x1-x0,x2-x1)/2.0; m = ValorNormal (new_sigma*S); newx1 = x1 + m; if (newx1<=x0) { Hijo.Gene[gen+1]=x0; newx1=x0; } else { if (newx1>=x2) { Hijo.Gene[gen+1]=x2; newx1=x2; } else Hijo.Gene[gen+1]=newx1; } /* Adaptation of S and mutation of the left point */ S=Adap.Minimo (x0-intervalos[gen].min,newx1-x0)/2.0; m=ValorNormal (new_sigma*S); newx=x0 + m; if (newx<=intervalos[gen].min) Hijo.Gene[gen]=intervalos[gen].min; else { if (newx>=newx1) Hijo.Gene[gen]=newx1; else Hijo.Gene[gen]=newx; } /* Adaptation of S and mutation of the center right */ S=Adap.Minimo (x2-newx1,intervalos[gen+2].max-x2)/2.0; m=ValorNormal (new_sigma*S); newx=x2 + m; if (newx<=newx1) Hijo.Gene[gen+2]=newx1; else { if (newx>=intervalos[gen+2].max) Hijo.Gene[gen+2] = intervalos[gen+2].max; else Hijo.Gene[gen+2]=newx; } } } /* we don't mutate the antecedent (C1) */ else for (gen=0; gen<primer_gen_C2; gen++) Hijo.Gene[gen] = Padre.Gene[gen]; if (Muta_C2==1) { /* Mutation of C2 */ for (gen=primer_gen_C2; gen<n_genes; gen++) { m = ValorNormal (new_sigma*S_sigma_consecuentes); newx = Padre.Gene[gen] + m; if (newx<intervalos[gen].min) Hijo.Gene[gen]=intervalos[gen].min; else { if (newx>intervalos[gen].max) Hijo.Gene[gen]=intervalos[gen].max; else Hijo.Gene[gen]=newx; } } } /* we don't mutate the consequent (C2) */ else for (gen=primer_gen_C2; gen<n_genes; gen++) Hijo.Gene[gen] = Padre.Gene[gen]; /* we evaluate the son */ Hijo.Perf = fun_adap.eval (Hijo.Gene); /* we count the mutation */ n_mutaciones += 1; /* if the son is better than the father this relieve his father, we accept sigma and we count another hit */ if (Hijo.Perf < Padre.Perf) { n_exitos+=1; it_sin_exito=0; sigma=new_sigma; for (j=0;j<n_genes;j++) Padre.Gene[j]=Hijo.Gene[j]; Padre.Perf=Hijo.Perf; } else it_sin_exito++; /* we adapt sigma */ new_sigma = AdaptacionSigma (sigma,n_exitos/(double)n_mutaciones, (double)n_genes-base_reglas.tabla.n_var_estado); if (it_sin_exito>=n_gen_ee) fin = 1; }while (fin==0); } /* Main of the Evolution Strategy (1+1) */ public void Estrategia_Evolucion () { int i, j, temp, cromosoma, n_ya_explotados, n_a_explotar; /* we evaluate the population */ for (i=0; i<long_poblacion; i++) if (New[i].n_e==1) { New[i].Perf = fun_adap.eval (New[i].Gene); New[i].n_e = 0; } /* we order the population by means of the bubble method */ for (i=0; i<long_poblacion; i++) indices_ordenacion[i] = i; for (i=0; i<long_poblacion; i++) for (j=0; j<long_poblacion-i-1; j++) if (New[indices_ordenacion[j+1]].Perf < New[indices_ordenacion[j]].Perf) { temp = indices_ordenacion[j]; indices_ordenacion[j] = indices_ordenacion[j+1]; indices_ordenacion[j+1] = temp; } /* the evolution strategy is applied to each individual of the population with fitness better than 0 */ i = 0; n_ya_explotados = 0; n_a_explotar = (int) (porc_pob_ee * long_poblacion); while ((i<long_poblacion) && (n_ya_explotados<n_a_explotar)) { /* we initialize the index of the chromosome */ cromosoma = indices_ordenacion[i]; /* we store this chromosome in the list of the exploited */ for (j=0; j<n_genes; j++) YaExplotados[n_ya_explotados].Gene[j] = New[cromosoma].Gene[j]; /* Inicialization of the counters */ YaExplotados[n_ya_explotados].Perf = New[cromosoma].Perf; n_ya_explotados++; /* we apply the ES(1+1) */ EE_1_1 (New[cromosoma], 1, 1); /* we look for the next unrecurrent individual */ if (n_ya_explotados<n_a_explotar) do i++; while (i<long_poblacion && Pertenece_AG (New[indices_ordenacion[i]],YaExplotados,n_ya_explotados)==1); } } }