/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.UnsupervisedLearning.AssociationRules.IntervalRuleLearning.FPgrowth; /** * <p> * @author Written by Alberto Fern�ndez (University of Granada) * @author Modified by Nicol� Flugy Pap� (Politecnico di Milano) 24/03/2009 * @version 1.1 * @since JDK1.6 * </p> */ import java.io.IOException; import java.util.ArrayList; import java.util.HashSet; import java.util.Hashtable; import keel.Dataset.*; public class myDataset { /** * <p> * It contains the methods to read a Dataset for the Association Rules Mining problem * </p> */ public static final int NOMINAL = 0; public static final int INTEGER = 1; public static final int REAL = 2; private double[][] trueTransactions = null; //true transactions array private boolean[][] missing = null; //possible missing values private double[] emax; //max value of an attribute private double[] emin; //min value of an attribute private int nTrans; // Number of transactions private int nInputs; // Number of inputs private int nOutputs; // Number of outputs private int nVars; // Number of variables private int nPartitionForNumericAttributes; //Number of partition private int[][] fakeTransactions = null; //fake transactions array private double[] steps = null; //steps of each attribute depending on the number of partitions private Hashtable<Integer, HashSet<Integer>> tidList = null; //structure that maps every attribute value with a list of TIDs which contains the latter private InstanceSet IS; //The whole instance set /** * <p> * Initialize a new set of instances * </p> * @param nPartition The number of partition in which numeric attributes are uniformly divided */ public myDataset(int nPartition) { IS = new InstanceSet(); nPartitionForNumericAttributes = (nPartition > 0) ? nPartition : 1; } /** * Outputs an array of transactions with their corresponding attribute values. * @return double[][] an array of transactions with their corresponding attribute values */ public double[][] getTrueTransactions() { return trueTransactions; } /** * Outputs an array of transactions with their recasted attribute values. * @return double[][] an array of transactions with their recasted attribute values */ public int[][] getFakeTransactions() { return fakeTransactions; } /** * It returns an array with the maximum values of the attributes * @return double[] an array with the maximum values of the attributes */ public double[] getemax() { return emax; } /** * It returns an array with the minimum values of the attributes * @return double[] an array with the minimum values of the attributes */ public double[] getemin() { return emin; } /** * It returns the upper bound of the variable * @param variable Id otf the attribute * @return double the upper bound of the variable */ public double getMax(int variable) { return emax[variable]; } /** * It returns the lower bound of the variable * @param variable Id of the attribute * @return double the lower bound of the variable */ public double getMin(int variable) { return emin[variable]; } /** * It gets the size of the data-set * @return int the number of transactions in the data-set */ public int getnTrans() { return nTrans; } /** * It gets the number of variables of the data-set * @return int the number of variables of the data-set */ public int getnVars() { return nVars; } /** * This function checks if the attribute value is missing * @param i int Example id * @param j int Variable id * @return boolean True is the value is missing, else it returns false */ public boolean isMissing(int i, int j) { return missing[i][j]; } /** * It reads the whole input data-set and it stores each transaction in * local array * @param datasetFile String name of the file containing the data-set * @throws IOException If there occurs any problem with the reading of the data-set */ public void readDataSet(String datasetFile) throws IOException { int i, j, k, cnt_index; try { // Load in memory a data-set that contains a Frequent Items Mining problem IS.readSet(datasetFile, true); this.nTrans = IS.getNumInstances(); this.nInputs = Attributes.getInputNumAttributes(); this.nOutputs = Attributes.getOutputNumAttributes(); this.nVars = this.nInputs + this.nOutputs; // Initialize and fill our own tables this.trueTransactions = new double[nTrans][nVars]; this.fakeTransactions = new int[nTrans][nVars]; this.steps = new double[nVars]; this.tidList = new Hashtable<Integer, HashSet<Integer>>(); missing = new boolean[nTrans][nVars]; // Maximum and minimum of inputs emax = new double[nVars]; emin = new double[nVars]; for (i = 0; i < nVars; i++) { if ( getAttributeType(i) != myDataset.NOMINAL ) { emax[i] = getMaxValue(i); emin[i] = getMinValue(i); } else { emin[i] = 0; emax[i] = getNumNominalValues(i) - 1; } } for (i=0; i < nVars; i++) steps[i] = (emax[i] - emin[i]) / nPartitionForNumericAttributes; // All values are casted into double/integer for (i=0; i < nTrans; i++) { Instance inst = IS.getInstance(i); cnt_index = 1; for (j=0; j < nInputs; j++) { trueTransactions[i][j] = IS.getInputNumericValue(i, j); fakeTransactions[i][j] = recastTrueValue(trueTransactions[i][j], j, cnt_index); addTIDToValueList(fakeTransactions[i][j], i); cnt_index += (getAttributeType(j) != myDataset.NOMINAL) ? nPartitionForNumericAttributes : getNumNominalValues(j); missing[i][j] = inst.getInputMissingValues(j); if (missing[i][j]) { trueTransactions[i][j] = emin[j] - 1; fakeTransactions[i][j] = 0; } } for (k=0; k < nOutputs; k++, j++) { trueTransactions[i][j] = IS.getOutputNumericValue(i, k); fakeTransactions[i][j] = recastTrueValue(trueTransactions[i][j], j, cnt_index); addTIDToValueList(fakeTransactions[i][j], i); cnt_index += (getAttributeType(j) != myDataset.NOMINAL) ? nPartitionForNumericAttributes : getNumNominalValues(j); } } } catch (Exception e) { System.out.println("DBG: Exception in readSet"); e.printStackTrace(); } } private int recastTrueValue(double true_value, int id_attr, int cnt_index) { int p, fake_value = (int)true_value; if (getAttributeType(id_attr) != myDataset.NOMINAL) { boolean stop = false; for (p=0; p < nPartitionForNumericAttributes-1 && (! stop); p++) { if ( (true_value >= (emin[id_attr] + steps[id_attr] * p)) && (true_value <= (emin[id_attr] + steps[id_attr] * (p + 1))) ) { fake_value = p; stop = true; } } if (! stop) fake_value = p; } return (fake_value + cnt_index); } private void addTIDToValueList(int value, int tid) { HashSet<Integer> lst = (HashSet<Integer>) tidList.get(value); if (lst == null) { lst = new HashSet<Integer>(); tidList.put(value, lst); } lst.add(tid); } /** * It checks if the data-set has any real value * @return boolean True if it has some real values, else false. */ public boolean hasRealAttributes() { return Attributes.hasRealAttributes(); } /** * It checks if the data-set has any numerical value (real or integer) * @return boolean True if it has some numerical values, else false. */ public boolean hasNumericalAttributes() { return (Attributes.hasIntegerAttributes() || Attributes.hasRealAttributes()); } /** * It checks if the data-set has any missing value * @return boolean True if it has some missing values, else false. */ public boolean hasMissingAttributes() { return (this.sizeWithoutMissing() < this.getnTrans()); } /** * It return the size of the data-set without having account the missing values * @return int the size of the data-set without having account the missing values */ public int sizeWithoutMissing() { int tam = 0; for (int i = 0; i < nTrans; i++) { int j; for (j = 1; (j < nVars) && (!isMissing(i, j)); j++) { ; } if (j == nVars) { tam++; } } return tam; } /** * It returns an array indicating the position of the missing values on a specific example * @param pos int Id of the example * @return boolean[] an array indicating the position of the missing values on the example */ public boolean [] getMissing(int pos){ return this.missing[pos]; } /** * It returns suitable recasted IDs to recognize later each value belonging to an attribute * @return ArrayList<Integer> an array with the IDs of each attribute value */ public ArrayList<Integer> getIDsOfAllAttributeValues() { int a, v, num_values; ArrayList<Integer> ids = new ArrayList<Integer>(); for (a=0; a < nVars; a++) { num_values = (getAttributeType(a) != myDataset.NOMINAL) ? nPartitionForNumericAttributes : getNumNominalValues(a); for (v=0; v < num_values; v++) ids.add(v * nVars + a); } return ids; } /** * It returns an array with the step values of each attribute depending on the chosen number of partitions * @return double[] an array with the steps values of each attribute */ public double[] getSteps() { return steps; } /** * It outputs an array of attribute values with their corresponding TIDs * @return an Hashtable of attribute values with their corresponding TIDs stored in an HashSet */ public Hashtable<Integer, HashSet<Integer>> getTIDList() { return tidList; } /** * It returns the name of the attribute in "id_attr" * @param id_attr int Id of the attribute * @return String the name of the attribute */ public String getAttributeName(int id_attr) { if (id_attr < this.nInputs) return ( Attributes.getInputAttribute(id_attr).getName() ); else return ( Attributes.getOutputAttribute(id_attr - this.nInputs).getName() ); } /** * It returns the type of the attribute in "id_attr" * @param id_attr int Id of the attribute * @return int the type of the attribute */ public int getAttributeType(int id_attr) { if (id_attr < this.nInputs) return ( Attributes.getInputAttribute(id_attr).getType() ); else return ( Attributes.getOutputAttribute(id_attr - this.nInputs).getType() ); } /** * It returns the nominal value "id_val" within the attribute "id_attr" * @param id_attr int Id of the attribute * @param id_val int Id of the nominal value within the attribute * @return String the nominal value */ public String getNominalValue(int id_attr, int id_val) { if (id_attr < this.nInputs) return ( Attributes.getInputAttribute(id_attr).getNominalValue(id_val) ); else return ( Attributes.getOutputAttribute(id_attr - this.nInputs).getNominalValue(id_val) ); } private double getMaxValue(int id_attr) { if (id_attr < this.nInputs) return ( Attributes.getInputAttribute(id_attr).getMaxAttribute() ); else return ( Attributes.getOutputAttribute(id_attr - this.nInputs).getMaxAttribute() ); } private double getMinValue(int id_attr) { if (id_attr < this.nInputs) return ( Attributes.getInputAttribute(id_attr).getMinAttribute() ); else return ( Attributes.getOutputAttribute(id_attr - this.nInputs).getMinAttribute() ); } private int getNumNominalValues(int id_attr) { if (id_attr < this.nInputs) return ( Attributes.getInputAttribute(id_attr).getNumNominalValues() ); else return ( Attributes.getOutputAttribute(id_attr - this.nInputs).getNumNominalValues() ); } }