/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Luciano S�nchez (University of Oviedo) 25/01/2004 * @author Modified by M.R. Su�rez (University of Oviedo) 18/12/2008 * @author Modified by Enrique A. de la Cal (University of Oviedo) 21/12/2008 * @version 1.0 * @since JDK1.5 * </p> */ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.*; import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*; // Wrappers used with genetic algorithms public class FuzzyGPRegSymModel extends FuzzyRegressor { NodeExprHold R; static double KMIN, KMAX; static int NOutputs; /** * <p> * Constructor. Generate a new fuzzy system of symbolic regression for GP model * </p> * @param pR The node * @param kmin Minimum k * @param kmax Maximum k * @param noutputs Number of outputs * @param typectes type of constants */ public FuzzyGPRegSymModel( NodeExprHold pR, double kmin, double kmax, int noutputs, int typectes) { R=(NodeExprHold)pR.clone(); KMIN=kmin; KMAX=kmax; NOutputs=noutputs; constType=typectes; } /** * <p> * Constructor. Generate a new fuzzy system of symbolic regression for * GP model from another one * </p> * @param mb The fuzzy system of symbolic regression for GP model */ public FuzzyGPRegSymModel(FuzzyGPRegSymModel mb) { R=(NodeExprHold)mb.R.clone(); } /** * <p> * This method assing the properties of a fuzzy system of symbolic regression for * GP model to another one * </p> * @param mb The fuzzy system of symbolic regression for GP model */ public void set(FuzzyGPRegSymModel mb) { R=(NodeExprHold)mb.R.clone(); } /** * <p> * This method clone a fuzzy model * </p> */ public FuzzyRegressor clone() { return new FuzzyGPRegSymModel(this); } /** * <p> * This method is for debug * </p> */ public void debug() { R.debug(); } /** * <p> * This method return the output of the model like fuzzy alpha cuts * </p> * @param x The output */ public FuzzyAlphaCut output(FuzzyAlphaCut [] x) { R.replaceTerminals(x); FuzzyAlphaCut[] result=R.Beval(); // result.length allways will be 1, with this kind of model. return result[0]; } }