/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/**
* <p>
* @author Written by Luciano S�nchez (University of Oviedo) 25/01/2004
* @author Modified by M.R. Su�rez (University of Oviedo) 18/12/2008
* @author Modified by Enrique A. de la Cal (University of Oviedo) 21/12/2008
* @version 1.0
* @since JDK1.5
* </p>
*/
package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model;
import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.*;
import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.*;
import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*;
// Wrappers used with genetic algorithms
public class FuzzyGPRegSymModel extends FuzzyRegressor {
NodeExprHold R;
static double KMIN, KMAX;
static int NOutputs;
/**
* <p>
* Constructor. Generate a new fuzzy system of symbolic regression for GP model
* </p>
* @param pR The node
* @param kmin Minimum k
* @param kmax Maximum k
* @param noutputs Number of outputs
* @param typectes type of constants
*/
public FuzzyGPRegSymModel( NodeExprHold pR, double kmin, double kmax, int noutputs, int typectes) {
R=(NodeExprHold)pR.clone();
KMIN=kmin; KMAX=kmax;
NOutputs=noutputs;
constType=typectes;
}
/**
* <p>
* Constructor. Generate a new fuzzy system of symbolic regression for
* GP model from another one
* </p>
* @param mb The fuzzy system of symbolic regression for GP model
*/
public FuzzyGPRegSymModel(FuzzyGPRegSymModel mb) {
R=(NodeExprHold)mb.R.clone();
}
/**
* <p>
* This method assing the properties of a fuzzy system of symbolic regression for
* GP model to another one
* </p>
* @param mb The fuzzy system of symbolic regression for GP model
*/
public void set(FuzzyGPRegSymModel mb) {
R=(NodeExprHold)mb.R.clone();
}
/**
* <p>
* This method clone a fuzzy model
* </p>
*/
public FuzzyRegressor clone() {
return new FuzzyGPRegSymModel(this);
}
/**
* <p>
* This method is for debug
* </p>
*/
public void debug() {
R.debug();
}
/**
* <p>
* This method return the output of the model like fuzzy alpha cuts
* </p>
* @param x The output
*/
public FuzzyAlphaCut output(FuzzyAlphaCut [] x) {
R.replaceTerminals(x);
FuzzyAlphaCut[] result=R.Beval();
// result.length allways will be 1, with this kind of model.
return result[0];
}
}