/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.MIL.Nearest_Neighbour.KNN; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.FileReader; import java.io.FileWriter; import java.util.ArrayList; import keel.Algorithms.MIL.Nearest_Neighbour.AbstractNearestNeighbour; import net.sourceforge.jclec.util.dataset.IDataset; import net.sourceforge.jclec.util.dataset.KeelDataSet; import net.sourceforge.jclec.util.dataset.IDataset.IInstance; public class KNN extends AbstractNearestNeighbour { ///////////////////////////////////////////////////////////////// // ----------------------------------------------- Public Methods ///////////////////////////////////////////////////////////////// public void execute() throws Exception { loadTrainDataset(); loadTestDataset(); report(trainReportFileName, trainDataset, trainInstances); report(testReportFileName, testDataset, testInstances); } ///////////////////////////////////////////////////////////////// // --------------------------------------------- Private Methods ///////////////////////////////////////////////////////////////// private int deriveClass(ArrayList<IInstance> bag, int numReferences) { int[] references = references(bag,numReferences); int rp = 0, rn = 0; for(int i = 0; i < references.length; i++) { if(trainInstances.get(references[i]).get(0).getValue(classIndex) == 0) rp++; else rn++; } if(rp > rn) return 0; else return 1; } private void report(String reportFileName, IDataset dataset, ArrayList<ArrayList<IInstance>> instances) { int predictedClass; String newline = System.getProperty("line.separator"); try { BufferedReader reader= new BufferedReader(new FileReader(((KeelDataSet) dataset).getFileName())); BufferedWriter writer= new BufferedWriter(new FileWriter(reportFileName)); String line= reader.readLine(); while(line.compareTo("@data") != 0) { writer.write(line + newline); line = reader.readLine(); } writer.write(line + newline); reader.close(); for(int i = 0; i < instances.size(); i++) { predictedClass = deriveClass(instances.get(i),numberReferences); writer.write((int)instances.get(i).get(0).getValue(classIndex) + " " + predictedClass + newline); } writer.close(); } catch (Exception e) {e.printStackTrace();} } }