/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.RE_SL_Methods.LEL_TSK; class BaseD { public Difuso[][] BaseDatos; public int[] n_etiquetas; public MiDataset tabla; public TipoIntervalo[][] intervalos; public BaseD(int MaxEtiquetas, MiDataset t) { int i, j; tabla = t; intervalos = new TipoIntervalo[tabla.n_variables][MaxEtiquetas]; BaseDatos = new Difuso[tabla.n_variables][MaxEtiquetas]; for (i = 0; i < tabla.n_variables; i++) { BaseDatos[i] = new Difuso[MaxEtiquetas]; intervalos[i] = new TipoIntervalo[MaxEtiquetas]; for (j = 0; j < MaxEtiquetas; j++) { BaseDatos[i][j] = new Difuso(); intervalos[i][j] = new TipoIntervalo(); } } n_etiquetas = new int[tabla.n_variables]; for (i = 0; i < tabla.n_variables; i++) n_etiquetas[i] = MaxEtiquetas; } /** Rounds the generated value for the semantics */ public double Asigna(double val, double tope) { if ((val > -1E-4) && (val < 1E-4)) { return (0); } if ((val > tope - 1E-4) && (val < tope + 1E-4)) { return (tope); } return (val); } /** Generates the semantics of the linguistic variables with triangular fuzzy sets and the mutation intervals to mutate */ public void Semantica() { int var, etq; double marca, valor; double[] punto = new double[3]; double[] punto_medio = new double[2]; /* we generate the fuzzy partitions of the variables */ for (var = 0; var < tabla.n_variables; var++) { marca = (tabla.extremos[var].max - tabla.extremos[var].min) / ((double) n_etiquetas[var] - 1); for (etq = 0; etq < n_etiquetas[var]; etq++) { valor = tabla.extremos[var].min + marca * (etq - 1); BaseDatos[var][etq].x0 = Asigna(valor, tabla.extremos[var].max); valor = tabla.extremos[var].min + marca * etq; BaseDatos[var][etq].x1 = Asigna(valor, tabla.extremos[var].max); BaseDatos[var][etq].x2 = BaseDatos[var][etq].x1; valor = tabla.extremos[var].min + marca * (etq + 1); BaseDatos[var][etq].x3 = Asigna(valor, tabla.extremos[var].max); BaseDatos[var][etq].y = 1; BaseDatos[var][etq].Nombre = "V" + (var + 1); BaseDatos[var][etq].Etiqueta = "E" + (etq + 1); } } /* we generate the mutation intervals for each gene */ for (var = 0; var < tabla.n_variables; var++) { for (etq = 0; etq < n_etiquetas[var]; etq++) { punto[0] = BaseDatos[var][etq].x0; punto[1] = BaseDatos[var][etq].x1; punto[2] = BaseDatos[var][etq].x3; punto_medio[0] = (punto[1] - punto[0]) / 2.0; punto_medio[1] = (punto[2] - punto[1]) / 2.0; intervalos[var][etq].min = punto[0] - punto_medio[0]; intervalos[var][etq].max = punto[2] + punto_medio[1]; } } } }