/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Luciano Sanchez (University of Oviedo) 01/01/2004 * @author Modified by Jose Otero (University of Oviedo) 01/12/2008 * @version 1.0 * @since JDK1.5 * </p> */ package keel.Algorithms.Statistical_Models.ModelLinear; import keel.Algorithms.Shared.Parsing.*; import keel.Algorithms.Shared.Exceptions.*; import keel.Algorithms.Shared.ClassicalOptim.*; import org.core.*; import java.io.*; public class ModelLinearLMS { /** * <p> * In this class, Least Squares Linear Regression is implemented * </p> */ static Randomize rand; /** * <p> * In this method, a Least Squares Linear model is estimated * @param tty unused boolean parameter, kept for compatibility * @param pc {@link ProcessConfig} object to obtain the train and test datasets * and the method's parameters. * </p> */ private static void linearModel(boolean tty, ProcessConfig pc) { // It is implemented as a one-layer perceptron; the // most efficient implementation should use a pseudoinverse, // but numerical results are identical and speed is // not critical for this algorithm try { String line = new String(); ProcessDataset pd=new ProcessDataset(); line=(String)pc.parInputData.get(ProcessConfig.IndexTrain); if (pc.parNewFormat) pd.processModelDataset(line,true); else pd.oldClassificationProcess(line); int nData=pd.getNdata(); // Number of examples int nVariables=pd.getNvariables(); // Number of variables int nInputs=pd.getNinputs(); // Number of inputs int nOutputs=1; double[][] X = pd.getX(); // Input data double[] Y = pd.getY(); // Output data double[] Yt = new double[Y.length]; pd.showDatasetStatistics(); double Y1[][] = new double [Y.length][1]; for (int i=0;i<nData;i++) Y1[i][0]=Y[i]; double[] maxInput = pd.getImaximum(); // Maximum and minimum for input data double[] minInput = pd.getIminimum(); double maxOutput = pd.getOmaximum(); // Maximum and minimum for output data double minOutput = pd.getOminimum(); int nLayers=0; int []ELEM=new int[nLayers]; // Weight vector (return value) int dimWeights=0; if (nLayers==0) { dimWeights=(nInputs+1)*(nOutputs); } else { dimWeights=(nInputs+1)*ELEM[0]; for (int i=1;i<nLayers;i++) dimWeights+=(ELEM[i-1]+1)*(ELEM[i]); dimWeights+=(nOutputs)*(ELEM[nLayers-1]+1); } double []weights=new double[dimWeights]; GCNet gcn=new GCNet(); double error=gcn.nntrain(nInputs,1,X,Y1,ELEM,weights,rand); System.out.println("Train MSE = "+error); for (int i=0;i<Yt.length;i++) { double salida[]=gcn.nnoutput(X[i]); Yt[i]=salida[0]; } pc.trainingResults(Y,Yt); // Test error ProcessDataset pdt = new ProcessDataset(); int nTest,npInputs,npVariables; line=(String)pc.parInputData.get(ProcessConfig.IndexTest); if (pc.parNewFormat) pdt.processModelDataset(line,false); else pdt.oldClassificationProcess(line); nTest = pdt.getNdata(); npVariables = pdt.getNvariables(); npInputs = pdt.getNinputs(); pdt.showDatasetStatistics(); if (npInputs!=nInputs) throw new IOException("IOERR in test file"); double[][] Xp=pdt.getX(); double [] Yp=pdt.getY(); double [] Yo=new double[Yp.length]; double RMS=0; for (int i=0;i<nTest;i++) { double output[]=gcn.nnoutput(Xp[i]); RMS+=(output[0]-Yp[i])*(output[0]-Yp[i]); Yo[i]=output[0]; } RMS/=nTest; System.out.println("Test ECM = "+RMS); pc.results(Yp,Yo); } catch(FileNotFoundException e) { System.err.println(e+" File not found"); } catch(IOException e) { System.err.println(e+" Read Error"); } } /** * <p> * This method calls {@link ModelLinearLMS} * @param args Vector of strings with command line arguments * </p> */ public static void main(String args[]) { boolean tty=false; ProcessConfig pc=new ProcessConfig(); System.out.println("Reading configuration file: "+args[0]); if (pc.fileProcess(args[0])<0) return; int algorithm=pc.parAlgorithmType; rand=new Randomize(); rand.setSeed(pc.parSeed); ModelLinearLMS cp=new ModelLinearLMS(); cp.linearModel(tty,pc); } }