/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Albert Orriols (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 03/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Genetic_Rule_Learning.XCS; import keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config; import java.util.*; import java.lang.*; import java.io.*; public class DixonReduction implements Reduction { /** * <p> * This class implements the reduction Interface. It codifies * Dixon et al's reduction algorithm proposed in [Dixon et al, 2003]. * Some extra decisions taken, not clearly explained in the paper, * are detailed in the algorithmic description by Albert Orriols. * </p> */ /////////////////////////////////////// // operations /** * <p> * Constructs an object of the class. * </p> */ public DixonReduction() { } // end DixonReduction /** * <p> * Compacts the ruleSet of the population using the Dixon method * described in the article as the "alternative reduction". * It destructs neither the environment nor the population. * </p> * <p> * @return a Population with the reducted population. The initial * population is not modified. * </p> * <p> * @param pop is the population that has to be reduced. * * @param reductionEnv is the environment that will be used to get the performance * of classifiers. * </p> */ public Population makeReduction(Population pop, Environment reductionEnv) { // We create a new population with only the experienced classifiers. System.out.println ("\tInitial Population Size: "+pop.getMacroClSum()); Population pExp = pop.deleteNotExpClassifiers(reductionEnv.getMaxPayoff()); System.out.println ("\tQualified Population Size: "+pExp.getMacroClSum()); pExp.printPopulationToFile(Config.reductedRulesFile+".experienced.plt"); // All classifiers are set to useless. pExp.setUseful(false); // Enable if you want to print the qualified population //pExp.print(); reductionEnv.beginSequentialExamples(); int numberOfExamples = reductionEnv.getNumberOfExamples(); //System.out.println ("The examples number of the environment is: "+numberOfExamples); for (int i=0; i<numberOfExamples; i++){ double [] example = null; if (i==0) example = reductionEnv.getCurrentState(); else example = reductionEnv.getSequentialState(); Population matchSet = new Population (pExp.getMacroClSum()); for (int j=0; j<pExp.getMacroClSum(); j++){ if (pExp.getClassifier(j).match(example)){ matchSet.addClassifier(pExp.getClassifier(j)); } } if (matchSet.getMacroClSum() > 0){ PredictionArray predArray = new PredictionArray(matchSet); if (predArray.howManyBestActions() == 1){ int actionChosen = predArray.getBestAction(); Population actionSet = new Population (matchSet, actionChosen); if (Config.typeOfReduction.toUpperCase().equals("WD")){ //Weak Reduction actionSet.setUseful(true); } else{ //Strong Reduction actionSet.setUsefulAccurateClassifier(true); } } } } //Now, the useless classifiers are removed from population System.out.println ("\tThe non useful Classifiers of "+pExp.getMacroClSum()+" qualified are: "+pExp.numberOfNotUseful()); pExp.removeNonUsefulClassifiers(); System.out.println ("\tReducted Population Size: "+pExp.getMacroClSum()+"\n\n"); return pExp; } // end makeReduction } // end DixonReduction