/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.RE_SL_Methods.mogulSC; import org.core.*; import java.util.*; import java.lang.Math; class AG_Tun { public double prob_cruce, prob_mutacion, a, b; public int Mu_next, Trials; public double Best_current_perf; public int Best_guy; public int long_poblacion, n_genes, n_reglas; public int[] sample; public int last; public Structure[] Old; public Structure[] New; public Structure[] C; public Structure[] temp; public TipoIntervalo[] intervalos; public Adap_Tun fun_adap; public AG_Tun(int n_poblacion, double cruce, double mutacion, double valor_a, double valor_b, Adap_Tun funcion) { int i; long_poblacion = n_poblacion; prob_cruce = cruce; prob_mutacion = mutacion; a = valor_a; b = valor_b; fun_adap = funcion; this.last = (int) (this.long_poblacion * this.prob_cruce); sample = new int[long_poblacion]; } /** Reads the RB of a input file */ private void leer_BR(String fichero, int n_variables) { int i; String cadena; cadena = Fichero.leeFichero(fichero); StringTokenizer sT = new StringTokenizer(cadena, "\n\r\t ", false); sT.nextToken(); sT.nextToken(); sT.nextToken(); n_reglas = Integer.parseInt(sT.nextToken()); n_genes = 3 * n_variables * n_reglas; Old = new Structure[long_poblacion]; New = new Structure[long_poblacion]; for (i = 0; i < long_poblacion; i++) { Old[i] = new Structure(n_genes); New[i] = new Structure(n_genes); } for (i = 0; i < n_genes; i++) { New[0].Gene[i] = Double.parseDouble(sT.nextToken()); } New[0].n_e = 1; } public void Intercambio() { temp = Old; Old = New; New = temp; } /** Inicialization of the population */ public void Initialize(String fichero, int n_variables) { int i, j; leer_BR(fichero, n_variables); prob_mutacion = prob_mutacion / (double) n_genes; C = new Structure[4]; for (i = 0; i < 4; i++) { C[i] = new Structure(n_genes); } intervalos = new TipoIntervalo[n_genes]; for (i = 0; i < n_genes; i++) { intervalos[i] = new TipoIntervalo(); } /* we generate the variation intervals for each gene */ for (i = 0; i < n_genes; i += 3) { intervalos[i].min = New[0].Gene[i] - (New[0].Gene[i + 1] - New[0].Gene[i]) / 2.0; intervalos[i].max = New[0].Gene[i] + (New[0].Gene[i + 1] - New[0].Gene[i]) / 2.0; intervalos[i + 1].min = New[0].Gene[i + 1] - (New[0].Gene[i + 1] - New[0].Gene[i]) / 2.0; intervalos[i + 1].max = New[0].Gene[i + 1] + (New[0].Gene[i + 2] - New[0].Gene[i + 1]) / 2.0; intervalos[i + 2].min = New[0].Gene[i + 2] - (New[0].Gene[i + 2] - New[0].Gene[i + 1]) / 2.0; intervalos[i + 2].max = New[0].Gene[i + 2] + (New[0].Gene[i + 2] - New[0].Gene[i + 1]) / 2.0; } /* the remainder of the population is randomly generated out of a the intervals */ for (i = 1; i < long_poblacion; i++) { for (j = 0; j < n_genes; j++) { New[i].Gene[j] = intervalos[j].min + (intervalos[j].max - intervalos[j].min) * Randomize.Rand(); } New[i].n_e = 1; } } /* Selection based on the Baker's Estocastic Universal Sampling */ void Select() { double expected, factor, perf, ptr, sum, rank_max, rank_min; int i, j, k, best, temp; rank_min = 0.75; /* we assign the ranking to each element: The best: ranking = long_poblacion-1 The worse: ranking = 0 */ for (i = 0; i < long_poblacion; i++) { Old[i].n_e = 0; } /* we look for the best ordered non element */ for (i = 0; i < long_poblacion - 1; i++) { best = -1; perf = 0.0; for (j = 0; j < long_poblacion; j++) { if ( (Old[j].n_e == 0) && (best == -1 || Old[j].Perf < perf)) { perf = Old[j].Perf; best = j; } } /* we assign the ranking */ Old[best].n_e = long_poblacion - 1 - i; } /* we normalize the ranking */ rank_max = 2.0 - rank_min; factor = (rank_max - rank_min) / (double) (long_poblacion - 1); /* we assign the number of replicas of each chormosome according to the select probability */ k = 0; ptr = Randomize.Rand(); for (sum = i = 0; i < long_poblacion; i++) { expected = rank_min + Old[i].n_e * factor; for (sum += expected; sum >= ptr; ptr++) { sample[k++] = i; } } /* we complete the population if necessary */ if (k != long_poblacion) { for (; k < long_poblacion; k++) { sample[k] = Randomize.RandintClosed(0, long_poblacion - 1); } } /* we shuffle the selected chromosomes */ for (i = 0; i < long_poblacion; i++) { j = Randomize.RandintClosed(i, long_poblacion - 1); temp = sample[j]; sample[j] = sample[i]; sample[i] = temp; } /* we create the new population */ for (i = 0; i < long_poblacion; i++) { k = sample[i]; for (j = 0; j < n_genes; j++) { New[i].Gene[j] = Old[k].Gene[j]; } New[i].Perf = Old[k].Perf; New[i].n_e = 0; } } private double T_producto_logico(double x, double y) { if (x < y) { return (x); } else { return (y); } } private double S_suma_logica(double x, double y) { if (x > y) { return (x); } else { return (y); } } private double Promedio1(double x, double y, double p) { return (p * x + (1 - p) * y); } /** Max-Min-Aritmetical Crossover */ public void Max_Min_Crossover() { int mom, dad, i, j, temp; int[] indice = new int[4]; double temp1, temp2; for (mom = 0; mom < last; mom += 2) { dad = mom + 1; for (i = 0; i < n_genes; i++) { temp1 = New[mom].Gene[i]; temp2 = New[dad].Gene[i]; /* we obtain 4 offsprings: appling the t-norma, the t-conorma and 2 the average function */ C[0].Gene[i] = T_producto_logico(temp1, temp2); C[1].Gene[i] = S_suma_logica(temp1, temp2); C[2].Gene[i] = Promedio1(temp1, temp2, a); C[3].Gene[i] = Promedio1(temp1, temp2, 1.0 - a); } /* Evaluation of the 4 offsprings */ C[0].Perf = fun_adap.eval(C[0].Gene); C[1].Perf = fun_adap.eval(C[1].Gene); C[2].Perf = fun_adap.eval(C[2].Gene); C[3].Perf = fun_adap.eval(C[3].Gene); /* we order the offsprings by means of the bubble method */ for (i = 0; i < 4; i++) { indice[i] = i; } for (i = 0; i < 4; i++) { for (j = 0; j < 3 - i; j++) { if (C[indice[j + 1]].Perf < C[indice[j]].Perf) { temp = indice[j]; indice[j] = indice[j + 1]; indice[j + 1] = temp; } } } for (i = 0; i < n_genes; i++) { New[mom].Gene[i] = C[indice[0]].Gene[i]; New[dad].Gene[i] = C[indice[1]].Gene[i]; } /* we update the fitness of the offsprings */ New[mom].Perf = C[indice[0]].Perf; New[dad].Perf = C[indice[1]].Perf; New[mom].n_e = 0; New[dad].n_e = 0; Trials += 2; } } private double delta(long t, double y, long n_generaciones) { double r, potencia, subtotal, sub; r = Randomize.Rand(); sub = 1.0 - (double) t / (double) n_generaciones; potencia = Math.pow(sub, (double) b); subtotal = Math.pow(r, potencia); return (y * (1.0 - subtotal)); } /** Mutation Non Uniform */ public void Mutacion_No_Uniforme(long Gen, long n_generaciones) { int posiciones, i, j; double nval, m; posiciones = n_genes * long_poblacion; if (prob_mutacion > 0) { while (Mu_next < posiciones) { /* we determinate the chromosome and the gene */ i = Mu_next / n_genes; j = Mu_next % n_genes; /* we mutate the gene */ if (Randomize.Rand() < 0.5) { nval = New[i].Gene[j] + delta(Gen, intervalos[j].max - New[i].Gene[j], n_generaciones); } else { nval = New[i].Gene[j] - delta(Gen, New[i].Gene[j] - intervalos[j].min, n_generaciones); } New[i].Gene[j] = nval; New[i].n_e = 1; /* we calculate the next position */ if (prob_mutacion < 1) { m = Randomize.Rand(); Mu_next += (int) (Math.log(m) / Math.log(1.0 - prob_mutacion)); Mu_next++; } else { Mu_next += 1; } } Mu_next -= posiciones; } } /** Fitness Function */ void Evaluate() { double performance; int i, j; for (i = 0; i < long_poblacion; i++) { /* if the chromosome aren't evaluated, it's evaluate */ if (New[i].n_e == 1) { New[i].Perf = fun_adap.eval(New[i].Gene); performance = New[i].Perf; New[i].n_e = 0; Trials++; /* we increment the number of evaluated chromosomes */ } else { performance = New[i].Perf; } /* we calculate the position of the best individual */ if (i == 0) { Best_current_perf = performance; Best_guy = 0; } else if (performance < Best_current_perf) { Best_current_perf = performance; Best_guy = i; } } } /* Elitist selection */ void Elitist() { int i, k, found; /* if the best individual of the old population aren't in the new population, we remplace the last individual for this */ for (i = 0, found = 0; i < long_poblacion && (found == 0); i++) { for (k = 0, found = 1; (k < n_genes) && (found == 1); k++) { if (New[i].Gene[k] != Old[Best_guy].Gene[k]) { found = 0; } } } if (found == 0) { for (k = 0; k < n_genes; k++) { New[long_poblacion - 1].Gene[k] = Old[Best_guy].Gene[k]; } New[long_poblacion - 1].Perf = Old[Best_guy].Perf; New[long_poblacion - 1].n_e = 0; } } /** Returns the best solution*/ public double[] solucion() { return (New[Best_guy].Gene); } /** Returns the fitness of the best solution */ public double solucion_ec() { return (New[Best_guy].Perf); } }