/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Luciano Sanchez (University of Oviedo) 21/01/2004 * @author Modified by J.R. Villar (University of Oviedo) 19/12/2008 * @version 1.0 * @since JDK1.4 * </p> */ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Classifier; //import keel.Algorithms.Fuzzy_Rule_Learning.Shared.*; import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*; public class FuzzyClassifier extends Classifier { /** * <p> * FuzzyClassifier is designed to allow a Fuzzy Classifier evolve by means of * an Genetic Algorithm (GA). This class is a specification of the class * {@link Classifier}. * * </p> */ //The rule base of the classifier RuleBase R; /** * <p> * Class constructor using the following parameters: * </p> * @param a the input variables {@link FuzzyPartition} array * @param b the class variable {@link FuzzyPartition} * @param tn the t-norm to be used * @param ag the aggregation operator */ public FuzzyClassifier(FuzzyPartition[] a,FuzzyPartition b, int tn, int ag) { R=new RuleBase(a,b,tn,ag); } /** * <p> * Copy constructor of this class, which clones its components * </p> * @param c the {@link FuzzyClassifier} to copy */ public FuzzyClassifier(FuzzyClassifier c) { R=c.R.clone(); } /** * <p> * This method copies the given FuzzyClassifier in the current object. * </p> * @param c the {@link FuzzyClassifier} object to be assigned to the current one */ public void set(FuzzyClassifier c) { R=c.R.clone(); } /** * <p> * This method evaluates the classifier for a given input example. * </p> * @param x array of doubles with the example to evaluate the classifier * @return the double values array with the membership value of the example * to each one of the classes. */ public double[] evaluate(double [] x) { return R.output(x); } /** * <p> * This method prints information about the Rule Base useful for debugging purposes * </p> */ public void debug() { R.debug(); } /** * <p> * This method prints information about the Rule Base useful for debugging purposes * </p> */ public String output() { return ("no output available"); } /** * <p> * This method clones the current object. * </p> * @return a {@link Classifier} object which is a perfect copy of the current one. */ public Classifier clone() { return new FuzzyClassifier(this); } /** * <p> * This method returns the {@link RuleBase} size. * </p> * @return the desired size value. */ public int size() { return R.size(); } /** * <p> * This method returns the {@link RuleBase} number of consequents. * </p> * @return the desired size value. */ public int getNumConsequents() { return R.numConsequents(); } /** * <p> * This method returns a {@link FuzzyRule} component. * </p> * @return the desired {@link FuzzyRule} component. */ public FuzzyRule getComponent(int n) { return R.getComponent(n); } /** * <p> * This method sets a given {@link FuzzyRule} in the {@link RuleBase}. * </p> * @param n the index of the component to set * @param r the new {@link FuzzyRule} to be introduced. */ public void setComponent(int n, FuzzyRule r) { R.setComponent(n,r.clone()); } };