/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Luciano S�nchez (University of Oviedo) 21/01/2004 * @author Modified by M.R. Su�rez (University of Oviedo) 18/12/2008 * @author Modified by Enrique A. de la Cal (University of Oviedo) 21/12/2008 * @version 1.0 * @since JDK1.5 * </p> */ package keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Model; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Node.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Individual.*; import keel.Algorithms.Fuzzy_Rule_Learning.Shared.Fuzzy.*; import org.core.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Algorithms.*; import keel.Algorithms.Fuzzy_Rule_Learning.Genetic.Shared.Genotypes.*; import keel.Algorithms.Shared.Exceptions.*; public class FuzzyGAPModelIndividual extends GeneticIndividualForModels { /** * <p> * Class for management fuzzy individuals in GAP models * </p> */ private static FuzzyPartition[] A; private static FuzzyPartition C; private Fuzzy label(int nv, int nlabel) { return A[nv].getComponent(nlabel); } private int defuzType; int numlabels(int nv) { return A[nv].size(); } /** * <p> * Constructor. Initialize a fuzzy individual for GAP model * </p> * @param a List of fuzzy partition * @param c Fuzzy partition * @param MAXH Maximum height for trees * @param tf Type of fitness * @param r Random * @param td Type of defuzzifier */ public FuzzyGAPModelIndividual(FuzzyPartition[] a, FuzzyPartition c, int MAXH, int tf, Randomize r, int td) { super(tf); A=a; C=c; GenotypeFuzzyGAP gf=new GenotypeFuzzyGAP(A,C,MAXH, r); g=gf; defuzType=td; //The object of class Model shares the tree defined in the genotype m=new FuzzyGPModel((NodeRuleBase)(gf.getRootNode()),C,td); } /** * <p> * Constructor. Initialize a fuzzy individual for GAP model from another one * </p> * @param p The fuzzy individual */ public FuzzyGAPModelIndividual(FuzzyGAPModelIndividual p) { super(p.fitnessType); g=p.g.clone(); GenotypeFuzzyGAP gf=(GenotypeFuzzyGAP)(g); defuzType=p.defuzType; m=new FuzzyGPModel((NodeRuleBase)(gf.getRootNode()),C,defuzType); } /** * <p> * This method clone a fuzzy individual for GAP model * </p> */ public GeneticIndividual clone() { return new FuzzyGAPModelIndividual(this); } /** * <p> * This method assing the properties of a fuzzy individual for GAP model to another one * </p> * @param p The fuzzy individual */ public void set(FuzzyGAPModelIndividual p) { g=p.g.clone(); GenotypeFuzzyGAP gf=(GenotypeFuzzyGAP)(g); defuzType=p.defuzType; m=new FuzzyGPModel((NodeRuleBase)(gf.getRootNode()),C,defuzType); } /** * <p> * This method generate a fuzzy individual for GAP model from another one * </p> * @return The new one */ public GeneticIndividual FuzzyGAPModelIndividualoClona() { return new FuzzyGAPModelIndividual(this); } /** * <p> * This method obtain the parameters of a genetic individual from the genotype * </p> */ public void parametersFromGenotype() { GenotypeFuzzyGAP gf=(GenotypeFuzzyGAP)(g); m=new FuzzyGPModel((NodeRuleBase)(gf.getRootNode()),C,defuzType); } /** * <p> * This method generate a random genotype and obtain the parameters from another one * </p> */ public void Random() { g.Random(); parametersFromGenotype(); } /** * <p> * This method implement the mutation operation * </p> * @param alpha Index mutation * @param IDMUTA Type of mutation * @throws invalidMutation message if error */ public void mutation(double alpha, int IDMUTA) throws invalidMutation { g.mutation(alpha,IDMUTA); parametersFromGenotype(); } /** * <p> * This method implement the cross operation. * The cross generates two objects of class 'individuogen' * </p> * @param p2 Genetic individual * @param p3 Genetic individual * @param p4 Genetic individual * @param IDCRUCE Type of cross * @throws invalidCrossover Message if error */ public void crossover(GeneticIndividual p2, GeneticIndividual p3, GeneticIndividual p4,int IDCRUCE) throws invalidCrossover { FuzzyGAPModelIndividual f2=(FuzzyGAPModelIndividual)(p2); FuzzyGAPModelIndividual f3=(FuzzyGAPModelIndividual)(p3); FuzzyGAPModelIndividual f4=(FuzzyGAPModelIndividual)(p4); g.crossover(f2.g,f3.g,f4.g,IDCRUCE); //The crossover generates two objects of class 'individuogen' f3.parametersFromGenotype(); f4.parametersFromGenotype(); } /** * <p> * This method is for debug * </p> */ public void debug() { g.debug(); } // Overload debug from GeneticIndividualForModels /** * <p> * This method calculates a local optimization * </p> * @param MAXITER Maximun number of iterations * @param idoptimization Type of optimization * @throws idoptimization Message if error */ public void localOptimization(int MAXITER, int idoptimization) throws invalidOptim { throw new invalidOptim("Optimizacion local no implementada en FuzzyGAPModelIndividual"); } }