/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // SVBPS.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 16-7-2004. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.SVBPS; import keel.Algorithms.Preprocess.Basic.*; import keel.Dataset.*; import org.core.*; import java.util.StringTokenizer; import java.util.Vector; import java.util.Arrays; import org.libsvm.*; public class SVBPS extends Metodo { /*Own parameters of the algorithm*/ private int k; private String kernelType; private double C; private double eps; private int degree; private double gamma; private double nu; private double p; private int shrinking; public SVBPS (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l, m, n, o; int nClases; svm_parameter SVMparam= new svm_parameter(); svm_problem SVMp = null; svm_model svr = null; double exTmp[]; boolean marcas[]; boolean coincide, igual; Instance inst; int nSel; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; Referencia orden[]; int vecinos[][]; Vector asociados[]; double dist, bestD; int vecinosTemp[]; double distTemp[]; int aciertosSin; int claseObt; int mayoria; boolean parar; long tiempo = System.currentTimeMillis(); /*Getting the number of different classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; //SVM PARAMETERS SVMparam.C = C; SVMparam.cache_size = 10; //10MB of cache SVMparam.degree = degree; SVMparam.eps = eps; SVMparam.gamma = gamma; SVMparam.nr_weight = 0; SVMparam.nu = nu; SVMparam.p = p; SVMparam.shrinking = shrinking; SVMparam.probability = 0; if(kernelType.compareTo("LINEAR")==0){ SVMparam.kernel_type = svm_parameter.LINEAR; }else if(kernelType.compareTo("POLY")==0){ SVMparam.kernel_type = svm_parameter.POLY; }else if(kernelType.compareTo("RBF")==0){ SVMparam.kernel_type = svm_parameter.RBF; }else if(kernelType.compareTo("SIGMOID")==0){ SVMparam.kernel_type = svm_parameter.SIGMOID; } SVMparam.svm_type = svm_parameter.C_SVC; SVMp = new svm_problem(); SVMp.l = datosTrain.length; SVMp.y = new double[SVMp.l]; SVMp.x = new svm_node[SVMp.l][datosTrain[0].length+1]; for(i=0;i<SVMp.l;i++) for(j=0;j<Attributes.getInputNumAttributes()+1;j++) SVMp.x[i][j] = new svm_node(); for (i=0; i<datosTrain.length; i++) { SVMp.y[i] = clasesTrain[i]; for (j=0; j < Attributes.getInputNumAttributes(); j++){ SVMp.x[i][j].index = j; SVMp.x[i][j].value = datosTrain[i][j]; } //end of instance SVMp.x[i][Attributes.getInputNumAttributes()].index = -1; } if(svm.svm_check_parameter(SVMp, SVMparam)!=null){ System.err.print("SVM parameter error in training: "); System.err.println(svm.svm_check_parameter(SVMp, SVMparam)); System.exit(-1); } //Train the SVM svr = svm.svm_train(SVMp, SVMparam); exTmp = new double[datosTrain[0].length]; marcas = new boolean[datosTrain.length]; Arrays.fill(marcas, false); nSel = 0; for (i=0; i<svr.getSV().length; i++) { for (j=0; j<svr.getSV()[i].length-1; j++) { exTmp[j] = svr.getSV()[i][j].value; } coincide = false; for (j=0; j<datosTrain.length && !coincide; j++) { igual = true; for (l=0; l<datosTrain[j].length && igual; l++) { if (exTmp[l] != datosTrain[j][l]) { igual = false; } } if (igual) { marcas[j] = true; nSel++; coincide = true; } } } /*Building an instance vector with distances to the nearest enemy*/ orden = new Referencia[datosTrain.length]; for (i=0; i<datosTrain.length; i++) { bestD = Double.POSITIVE_INFINITY; for (j=0; j<datosTrain.length; j++) { if (clasesTrain[i] != clasesTrain[j]) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (dist < bestD) bestD = dist; } } orden[i] = new Referencia (i, bestD); } /*Sort the previos vector*/ Arrays.sort(orden); /*Inicialization of data structures of neighbors and associates*/ distTemp = new double[k+1]; vecinosTemp = new int[k+1]; vecinos = new int[datosTrain.length][k+1]; asociados = new Vector[datosTrain.length]; for (i=0; i<datosTrain.length; i++) asociados[i] = new Vector (); /*Body of the DROP2 algorithm. It calculates, for each instance, a set of associates instances and look if the deletion of the main instance produces a change of accuracy in those associates*/ for (i=0; i<datosTrain.length; i++) { /*Calculate the k+1 nearest neighbors of each instance*/ KNN.evaluacionKNN2(k+1, datosTrain, realTrain, nominalTrain, nulosTrain, clasesTrain, datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], nClases, distanceEu, vecinos[i]); for (j=0; j<vecinos[i].length; j++) { asociados[vecinos[i][j]].addElement (new Referencia (i,0)); } } /*Check if deleting or not the instances considering the WITH and WITHOUT sets*/ for (o=0; o<datosTrain.length; o++){ i = orden[o].entero; if (marcas[i]) { aciertosSin = 0; marcas[i] = false; nSel--; /*Construction of S set from the temporal flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will be evaluated for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } marcas[i] = true; nSel++; /*Evaluation of associates without the instance in T*/ for (j=0; j<k+1; j++) { claseObt = KNN.evaluacionKNN2(k, conjS, conjR, conjN, conjM, clasesS, datosTrain[vecinos[i][j]], realTrain[vecinos[i][j]], nominalTrain[vecinos[i][j]], nulosTrain[vecinos[i][j]], nClases, distanceEu); if (claseObt == clasesTrain[vecinos[i][j]]) //it classify it correctly aciertosSin++; } mayoria = (k+1) / 2; if (aciertosSin > mayoria) { /*Delete P of S*/ marcas[i] = false; nSel--; /*For each associate of P, search a new nearest neighbor*/ for (j=0; j<asociados[i].size(); j++) { for (l=0; l<k+1; l++) { vecinosTemp[l] = vecinos[((Referencia)(asociados[i].elementAt(j))).entero][l]; vecinos[((Referencia)(asociados[i].elementAt(j))).entero][l] = -1; distTemp[l] = Double.POSITIVE_INFINITY; } for (l=0; l<datosTrain.length; l++) { if (marcas[l]) { //is in S dist = KNN.distancia(datosTrain[((Referencia)(asociados[i].elementAt(j))).entero], realTrain[((Referencia)(asociados[i].elementAt(j))).entero], nominalTrain[((Referencia)(asociados[i].elementAt(j))).entero], nulosTrain[((Referencia)(asociados[i].elementAt(j))).entero], datosTrain[l], realTrain[l], nominalTrain[l], nulosTrain[l], distanceEu); parar = false; /*Get the nearest neighbors in this situation again*/ for (m=0; m<(k+1) && !parar; m++) { if (dist < distTemp[m]) { parar = true; for (n=m+1; n<k+1; n++) { distTemp[n] = distTemp[n-1]; vecinos[((Referencia)(asociados[i].elementAt(j))).entero][n] = vecinos[((Referencia)(asociados[i].elementAt(j))).entero][n-1]; } distTemp[m] = dist; vecinos[((Referencia)(asociados[i].elementAt(j))).entero][m] = l; } } } } /*Add to the list of associates of the new neighbor this instance*/ for (l=0; l<k+1; l++) { parar = false; for (m=0; m<asociados[vecinosTemp[l]].size() && !parar; m++) { if (((Referencia)(asociados[vecinosTemp[l]].elementAt(m))).entero == ((Referencia)(asociados[i].elementAt(j))).entero && vecinosTemp[l] != i) { asociados[vecinosTemp[l]].removeElementAt(m); parar = true; } } } for (l=0; l<k+1; l++) { asociados[vecinos[((Referencia)(asociados[i].elementAt(j))).entero][l]].addElement(new Referencia (((Referencia)(asociados[i].elementAt(j))).entero,0)); } } } } } /*Construction of S set from the temporal flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m=0, l=0; m<datosTrain.length; m++) { if (marcas[m]) { //the instance will be evaluated for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; conjR[l][j] = realTrain[m][j]; conjN[l][j] = nominalTrain[m][j]; conjM[l][j] = nulosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } System.out.println("SVBPS "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); kernelType = tokens.nextToken().substring(1); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); C = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); eps = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); degree = Integer.parseInt(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); gamma = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); nu = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); p = Double.parseDouble(tokens.nextToken().substring(1)); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); shrinking = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }