/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/***********************************************************************
This file is part of the Fuzzy Instance Based Learning package, a
Java package implementing Fuzzy Nearest Neighbor Classifiers as
complementary material for the paper:
Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects
Copyright (C) 2012
J. Derrac (jderrac@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
F. Herrera (herrera@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/**
*
* File: ReportTool.java
*
* Class to print reports about the results of the classification process
*
* @author Written by Joaqu�n Derrac (University of Granada) 13/11/2012
* @version 1.0
* @since JDK1.5
*
*/
package keel.Algorithms.Fuzzy_Instance_Based_Learning;
import java.util.Arrays;
import org.core.Files;
public class ReportTool{
private static int trOrig [];
private static int trPre [];
private static int tsOrig [];
private static int tsPre [];
private static int testUnclassified;
private static int trainUnclassified;
private static int testConfMatrix[][];
private static int trainConfMatrix[][];
private static int nClasses;
private static String fileName;
/**
* Provide information about the classification process to the report tool
*
* @param trainReal Vector with the real classes of the training data
* @param trainPrediction Vector with the predicted classes for the training data
* @param testReal Vector with the real classes of the test data
* @param testPrediction Vector with the predicted classes for the test data
* @param nClas Number of classes defined for the data
*/
public static void setResults(int [] trainReal,int [] trainPrediction,int [] testReal,int [] testPrediction, int nClas){
trOrig= new int [trainReal.length];
trPre= new int [trainPrediction.length];
tsOrig= new int [testReal.length];
tsPre= new int [testPrediction.length];
for(int i=0;i< trainReal.length; i++){
trOrig[i]=trainReal[i];
}
for(int i=0;i< trainPrediction.length; i++){
trPre[i]=trainPrediction[i];
}
for(int i=0;i< testReal.length; i++){
tsOrig[i]=testReal[i];
}
for(int i=0;i< testPrediction.length; i++){
tsPre[i]=testPrediction[i];
}
nClasses=nClas;
}//end-method
/**
* Prints the output report
*
*/
public static void printReport(){
String text="";
computeConfussionMatrixes();
//Accuracy
text+="Accuracy: "+getAccuracy()+"\n";
text+="Accuracy (Training): "+getTrainAccuracy()+"\n";
//Kappa
text+="Kappa: "+getKappa()+"\n";
text+="Kappa (Training): "+getTrainKappa()+"\n";
//Unclassified
text+="Unclassified instances: "+testUnclassified+"\n";
text+="Unclassified instances (Training): "+trainUnclassified+"\n";
//Model time
text+= "Model time: "+Timer.getModelTime()+"\n";
//Training time
text+= "Training time: "+Timer.getTrainingTime()+"\n";
//Test time
text+= "Test time: "+Timer.getTestTime()+"\n";
//Confusion matrix
text+="Confussion Matrix:\n";
for(int i=0;i<nClasses;i++){
for(int j=0;j<nClasses;j++){
text+=testConfMatrix[i][j]+"\t";
}
text+="\n";
}
text+="\n";
text+="Training Confussion Matrix:\n";
for(int i=0;i<nClasses;i++){
for(int j=0;j<nClasses;j++){
text+=trainConfMatrix[i][j]+"\t";
}
text+="\n";
}
text+="\n";
//Finish additional output file
Files.writeFile (fileName, text);
}//end-method
/**
* Computes the confusion matrixes
*
*/
private static void computeConfussionMatrixes(){
testConfMatrix= new int [nClasses][nClasses];
trainConfMatrix= new int [nClasses][nClasses];
testUnclassified=0;
for(int i=0;i<nClasses;i++){
Arrays.fill(testConfMatrix[i], 0);
}
for(int i=0;i<tsPre.length;i++){
if(tsPre[i]==-1){
testUnclassified++;
}else{
testConfMatrix[tsPre[i]][tsOrig[i]]++;
}
}
trainUnclassified=0;
for(int i=0;i<nClasses;i++){
Arrays.fill(trainConfMatrix[i], 0);
}
for(int i=0;i<trPre.length;i++){
if(trPre[i]==-1){
trainUnclassified++;
}else{
trainConfMatrix[trPre[i]][trOrig[i]]++;
}
}
}//end-method
/**
* Computes the accuracy obtained on test set
*
* @return Accuracy on test set
*/
private static double getAccuracy(){
double acc;
int count=0;
for(int i=0;i<nClasses;i++){
count+=testConfMatrix[i][i];
}
acc=((double)count/(double)tsOrig.length);
return acc;
}//end-method
/**
* Computes the accuracy obtained on the training set
*
* @return Accuracy on test set
*/
private static double getTrainAccuracy(){
double acc;
int count=0;
for(int i=0;i<nClasses;i++){
count+=trainConfMatrix[i][i];
}
acc=((double)count/(double)trOrig.length);
return acc;
}//end-method
/**
* Computes the Kappa obtained on test set
*
* @return Kappa on test set
*/
private static double getKappa(){
double kappa;
double agreement,expected;
int count,count2;
double prob1,prob2;
count=0;
for(int i=0;i<nClasses;i++){
count+=testConfMatrix[i][i];
}
agreement=((double)count/(double)tsOrig.length);
expected=0.0;
for(int i=0;i<nClasses;i++){
count=0;
count2=0;
for(int j=0;j<nClasses;j++){
count+=testConfMatrix[i][j];
count2+=testConfMatrix[j][i];
}
prob1=((double)count/(double)tsOrig.length);
prob2=((double)count2/(double)tsOrig.length);
expected+=(prob1*prob2);
}
kappa=(agreement-expected)/(1.0-expected);
return kappa;
}//end-method
/**
* Computes the Kappa obtained on test set
*
* @return Kappa on test set
*/
private static double getTrainKappa(){
double kappa;
double agreement,expected;
int count,count2;
double prob1,prob2;
count=0;
for(int i=0;i<nClasses;i++){
count+=trainConfMatrix[i][i];
}
agreement=((double)count/(double)trOrig.length);
expected=0.0;
for(int i=0;i<nClasses;i++){
count=0;
count2=0;
for(int j=0;j<nClasses;j++){
count+=trainConfMatrix[i][j];
count2+=trainConfMatrix[j][i];
}
prob1=((double)count/(double)trOrig.length);
prob2=((double)count2/(double)trOrig.length);
expected+=(prob1*prob2);
}
kappa=(agreement-expected)/(1.0-expected);
return kappa;
}//end-method
/**
* Sets the name of the output file to print the report
*
* @param name Name of the file
*/
public static void setOutputFile(String name){
fileName=name;
}//end-method
/**
* Adds external information to the report
*
* @param contents Information to add
*/
public static void addToReport(String contents){
Files.addToFile(fileName, contents);
}//end-method
}//end-class