/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Jaume Bacardit (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 23/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Genetic_Rule_Learning.GAssist; import keel.Dataset.*; import keel.Algorithms.Genetic_Rule_Learning.Globals.*; public class Globals_UBR { /** * <p> * Computes and maintains global information for the UBR KR * </p> */ public static int ruleSize; public static int[] size; public static int[] offset; public static int[] types; public static double[] minD; public static double[] maxD; public static double[] sizeD; public static void initialize() { ruleSize = 0; size = new int[Parameters.numAttributes]; types = new int[Parameters.numAttributes]; offset = new int[Parameters.numAttributes]; minD = new double[Parameters.numAttributes]; maxD = new double[Parameters.numAttributes]; sizeD = new double[Parameters.numAttributes]; for (int i = 0; i < Parameters.numAttributes; i++) { Attribute at = Attributes.getAttribute(i); offset[i] = ruleSize; if (at.getType() == Attribute.NOMINAL) { types[i] = Attribute.NOMINAL; size[i] = at.getNumNominalValues(); } else { types[i] = Attribute.REAL; size[i] = 4; minD[i] = at.getMinAttribute(); maxD[i] = at.getMaxAttribute(); sizeD[i] = maxD[i] - minD[i]; } ruleSize += size[i]; } ruleSize++; } public static boolean hasDefaultClass() { return true; } }