/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ // // PSRCG.java // // Salvador Garc�a L�pez // // Created by Salvador Garc�a L�pez 1-6-2005. // Copyright (c) 2004 __MyCompanyName__. All rights reserved. // package keel.Algorithms.Preprocess.Instance_Selection.PSRCG; import keel.Algorithms.Preprocess.Basic.*; import java.util.StringTokenizer; import java.util.Arrays; import org.core.*; public class PSRCG extends Metodo { /*Own parameters of the algorithm*/ public PSRCG (String ficheroScript) { super (ficheroScript); } public void ejecutar () { int i, j, l; boolean grafo[][]; boolean marcas[]; int nSel = 0; double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int loc = 0, loc2 = 0; double minDist, dist; int nClases[], nc; boolean parar; int nombreClases[]; double RCG1, RCG2; double uncer[]; double maxUnc; int cont1, cont2, pos=0; long tiempo = System.currentTimeMillis(); /*Getting the name of differents classes*/ nClases = new int[clasesTrain.length]; Arrays.fill(nClases,Integer.MIN_VALUE); nc = 0; for (i=0; i<clasesTrain.length; i++) { parar = false; for (j=0; j<nClases.length && nClases[j]!=Integer.MIN_VALUE; j++) { if (nClases[j] == clasesTrain[i]) parar = true; } if (!parar) { nClases[nc] = clasesTrain[i]; nc++; } } nombreClases = new int[nc]; for (i=0; i<nc; i++) nombreClases[i] = nClases[i]; /*Inicialization of the flagged instances vector for a posterior copy*/ marcas = new boolean[datosTrain.length]; for (i=0; i<datosTrain.length; i++) marcas[i] = true; nSel = datosTrain.length; /*Inicialization of the KNN graph*/ grafo = new boolean[datosTrain.length][datosTrain.length]; for (i=0; i<datosTrain.length; i++) { Arrays.fill(grafo[i], false); grafo[i][i] = true; } /*Get the initialy KNN graph*/ for (i=0; i<datosTrain.length; i++) { minDist = Double.POSITIVE_INFINITY; for (j=0; j<datosTrain.length; j++) { if (i != j) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (dist < minDist) { minDist = dist; loc = j; } } } grafo[i][loc] = true; grafo[loc][i] = true; } uncer = new double[datosTrain.length]; RCG2 = computeRCG (clasesTrain, grafo, marcas, nombreClases, nSel); do { RCG1 = RCG2; /*Calculate the uncertainty of each instance*/ for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { uncer[i] = Uloc (clasesTrain, marcas, nombreClases, grafo, i); } } /*select the instance with max uncertainty*/ maxUnc = Double.NEGATIVE_INFINITY; for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { if (uncer[i] > maxUnc) { maxUnc = uncer[i]; pos = i; } else if (uncer[i] == maxUnc) { cont1 = cont2 = 0; for (j=0; j<grafo[i].length; j++) if (grafo[i][j] && marcas[j]) cont1++; for (j=0; j<grafo[pos].length; j++) if (grafo[pos][j] && marcas[j]) cont2++; if (cont1 < cont2) pos = i; } } } /*Remove the instance selected*/ marcas[pos] = false; nSel--; /*Compute RCG*/ RCG2 = computeRCG (clasesTrain, grafo, marcas, nombreClases, nSel); } while (RCG2 < RCG1 || !(RCG2 > 0)); /*Inicialization of the KNN graph*/ grafo = new boolean[datosTrain.length][datosTrain.length]; for (i=0; i<datosTrain.length; i++) { Arrays.fill(grafo[i], false); grafo[i][i] = true; } /*Get the initial KNN graph*/ for (i=0; i<datosTrain.length; i++) { minDist = Double.POSITIVE_INFINITY; for (j=0; j<datosTrain.length; j++) { if (i != j) { dist = KNN.distancia(datosTrain[i], realTrain[i], nominalTrain[i], nulosTrain[i], datosTrain[j], realTrain[j], nominalTrain[j], nulosTrain[j], distanceEu); if (dist < minDist && minDist == Double.POSITIVE_INFINITY) { minDist = dist; loc = j; } else if (dist < minDist) { minDist = dist; loc2 = loc; loc = j; } } } grafo[i][loc] = true; grafo[i][loc2] = true; grafo[loc][i] = true; grafo[loc2][i] = true; } /*Calculate the uncertainty of each instance*/ for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { uncer[i] = Uloc (clasesTrain, marcas, nombreClases, grafo, i); } } /*Remove instances with uncertainty null in the neighbourhood*/ for (i=0; i<datosTrain.length; i++) { if (marcas[i]) { if (uncer[i] == 0) { marcas[i] = false; nSel--; } } } /*Building of the S set from the flags*/ conjS = new double[nSel][datosTrain[0].length]; conjR = new double[nSel][datosTrain[0].length]; conjN = new int[nSel][datosTrain[0].length]; conjM = new boolean[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (i=0, l=0; i<datosTrain.length; i++) { if (marcas[i]) { //the instance will be copied to the solution for (j=0; j<datosTrain[0].length; j++) { conjS[l][j] = datosTrain[i][j]; conjR[l][j] = realTrain[i][j]; conjN[l][j] = nominalTrain[i][j]; conjM[l][j] = nulosTrain[i][j]; } clasesS[l] = clasesTrain[i]; l++; } } System.out.println("PSRCG "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); OutputIS.escribeSalida(ficheroSalida[0], conjR, conjN, conjM, clasesS, entradas, salida, nEntradas, relation); OutputIS.escribeSalida(ficheroSalida[1], test, entradas, salida, nEntradas, relation); } private double computeRCG (int clases[], boolean grafo[][], boolean marcas[], int nombreClases[], int nSel) { return (U0(clases,marcas,nombreClases,nSel)-Utot(clases,marcas,nombreClases,grafo,nSel))/U0(clases,marcas,nombreClases,nSel); } private double U0 (int clases[], boolean marcas[], int nombreClases[], int nSel) { int i, j; int sumaC; double sumaT = 0.0; for (i=0; i<nombreClases.length; i++){ sumaC = 0; for (j=0; j<clases.length; j++) { if (marcas[j]) { //is in S if (clases[j] == nombreClases[i]) { //it has the same label class sumaC++; } } } sumaT += ((double)sumaC/(double)nSel)*(1.0 - ((double)sumaC/(double)nSel)); } return sumaT; } private double Uloc (int clases[], boolean marcas[], int nombreClases[], boolean grafo[][], int instance) { int i, j; int sumaC; double sumaT = 0.0; int ni=0; /*Get the neighbourhood cardinality of the instance*/ for (i=0; i<grafo[instance].length; i++) if (grafo[instance][i] && marcas[i]) ni++; for (i=0; i<nombreClases.length; i++){ sumaC = 0; for (j=0; j<grafo[instance].length; j++) { if (grafo[instance][j] && marcas[j]) { //there is an edge and the destiny is in S if (clases[j] == nombreClases[i]) { //it has the same label class sumaC++; } } } sumaT += ((double)sumaC/(double)ni)*(1.0 - ((double)sumaC/(double)ni)); } return sumaT; } private double Utot (int clases[], boolean marcas[], int nombreClases[], boolean grafo[][], int nSel) { int i, j; double sumaT = 0.0; int cardE = 0; int ni; /*Get the cardinality of the Edges set*/ for (i=0; i<grafo.length; i++) { if (marcas[i]) { for (j=0; j<grafo[i].length; j++) { if (marcas[j]) { if (grafo[i][j]) cardE++; } } } } for (i=0; i<grafo.length; i++) { if (marcas[i]) { ni=0; /*Get the neighbourhood cardinality of the instance*/ for (j=0; j<grafo[i].length; j++) if (grafo[i][j] && marcas[j]) ni++; sumaT += ((double)ni/(double)cardE)*Uloc(clases, marcas, nombreClases, grafo, i); } } return sumaT; } public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; } }