/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /*********************************************************************** This file is part of the Fuzzy Instance Based Learning package, a Java package implementing Fuzzy Nearest Neighbor Classifiers as complementary material for the paper: Fuzzy Nearest Neighbor Algorithms: Taxonomy, Experimental analysis and Prospects Copyright (C) 2012 J. Derrac (jderrac@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) F. Herrera (herrera@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: FRNN_FRS.java * * The FRNN_FRS algorithm. * * @author Written by Joaqu�n Derrac (University of Granada) 13/11/2011 * @version 1.0 * @since JDK1.5 * */ package keel.Algorithms.Fuzzy_Instance_Based_Learning.FRNN_FRS; import java.text.DecimalFormat; import java.text.DecimalFormatSymbols; import java.util.Arrays; import java.util.StringTokenizer; import org.core.Files; import keel.Algorithms.Fuzzy_Instance_Based_Learning.FuzzyIBLAlgorithm; import keel.Algorithms.Fuzzy_Instance_Based_Learning.ReportTool; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Timer; import keel.Algorithms.Fuzzy_Instance_Based_Learning.Util; public class FRNN_FRS extends FuzzyIBLAlgorithm { private int K; /** * Reads the parameters of the algorithm. * * @param script Configuration script * */ @Override protected void readParameters(String script) { String file; String line; StringTokenizer fileLines, tokens; file = Files.readFile (script); fileLines = new StringTokenizer (file,"\n\r"); //Discard in/out files definition fileLines.nextToken(); fileLines.nextToken(); fileLines.nextToken(); //Getting the K parameter line = fileLines.nextToken(); tokens = new StringTokenizer (line, "="); tokens.nextToken(); K = Integer.parseInt(tokens.nextToken().substring(1)); } //end-method /** * Main builder. Initializes the methods' structures * * @param script Configuration script */ public FRNN_FRS(String script){ readDataFiles(script); //Naming the algorithm name="Fuzzy Rough nearest neighbor"; //Initialization of Reporting tool ReportTool.setOutputFile(outFile[2]); } //end-method /** * Generates the model of the algorithm */ public void generateModel (){ int index1,index2; //Start of model time Timer.resetTime(); //End of model time Timer.setModelTime(); //Showing results System.out.println(name+" "+ relation + " Model " + Timer.getModelTime() + "s"); } //end-method private int classifyInstance(int index, boolean train){ double minDist[]; int nearestN[]; double dist; boolean stop; double min; double quality; double R[]; double lower[]; double upper[]; int outputClass; nearestN = new int[K]; minDist = new double[K]; R = new double[K]; lower = new double[nClasses]; upper = new double[nClasses]; for (int i=0; i<K; i++) { nearestN[i] = 0; minDist[i] = Double.MAX_VALUE; } //KNN Method starts here for (int i=0; i<trainData.length; i++) { if(train){ if(i==index){ dist = Double.MAX_VALUE; }else{ dist = Util.euclideanDistance(trainData[i],trainData[index]); } } else{ dist = Util.euclideanDistance(trainData[i],testData[index]); } //see if it's nearer than our previous selected neighbors stop=false; for(int j=0;j<K && !stop;j++){ if (dist < minDist[j]) { for (int l = K - 1; l >= j+1; l--) { minDist[l] = minDist[l - 1]; nearestN[l] = nearestN[l - 1]; } minDist[j] = dist; nearestN[j] = i; stop=true; } } } quality=0; Arrays.fill(R, 0.0); Arrays.fill(lower, 1.0); Arrays.fill(upper, 0.0); min=Double.MAX_VALUE; for (int l = 0; l< K; l++){ for(int j=0;j<inputAtt;j++){ if(train){ dist=1.0-Math.abs(trainData[nearestN[l]][j]-trainData[index][j]); } else{ dist=1.0-Math.abs(trainData[nearestN[l]][j]-testData[index][j]); } if(min>dist){ min=dist; } } R[l]=min; //A(x) is 1 for the training output class... 0 for the rest for(int c=0; c<nClasses; c++){ if(c==trainOutput[nearestN[l]]){ //lower approximation lower[c]=Math.min(lower[c], Math.max(1.0-R[l],1.0)); //upper approximation upper[c]=Math.max(upper[c], Math.min(R[l],1.0)); } else{ lower[c]=Math.min(lower[c], Math.max(1.0-R[l],0.0)); //upper approximation upper[c]=Math.max(upper[c], Math.min(R[l],0.0)); } } } outputClass=-1; for(int c=0; c<nClasses; c++){ if(quality<(lower[c]+upper[c])/2.0){ quality=(lower[c]+upper[c])/2.0; outputClass=c; } } return outputClass; } /** * Classifies the training set (leave-one-out) */ public void classifyTrain(){ //Start of training time Timer.resetTime(); classifyTrainSet(); //End of training time Timer.setTrainingTime(); //Showing results System.out.println(name+" "+ relation + " Training " + Timer.getTrainingTime() + "s"); } //end-method /** * Classifies the test set */ public void classifyTest(){ //Start of training time Timer.resetTime(); classifyTestSet(); //End of test time Timer.setTestTime(); //Showing results System.out.println(name+" "+ relation + " Test " + Timer.getTestTime() + "s"); } //end-method /** * Classifies the training set */ public void classifyTrainSet(){ for(int i=0;i<trainData.length;i++){ trainPrediction[i]=classifyInstance(i, true); } } //end-method /** * Classifies the test set */ public void classifyTestSet(){ for(int i=0;i<testData.length;i++){ testPrediction[i]=classifyInstance(i, false); } } //end-method /** * Reports the results obtained */ public void printReport(){ writeOutput(outFile[0], trainOutput, trainPrediction); writeOutput(outFile[1], testOutput, testPrediction); ReportTool.setResults(trainOutput,trainPrediction,testOutput,testPrediction,nClasses); ReportTool.printReport(); } //end-method } //end-class