/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Rule_Learning.SRI; /** * <p>Title: Algorithm</p> * * <p>Description: It contains the implementation of the algorithm</p> * * * <p>Company: KEEL </p> * * @author Alberto Fernandez * @version 1.0 */ import java.io.IOException; import org.core.*; import java.util.*; import keel.Dataset.*; public class Algorithm { myDataset train, val, test; String outputTr, outputTst, outputReglas; int BeamWidth; int minPos; int minNeg; //int nClasses; //We may declare here the algorithm's parameters private boolean somethingWrong = false; //to check if everything is correct. /** * Default constructor */ public Algorithm() { } /** * It reads the data from the input files (training, validation and test) and parse all the parameters * from the parameters array. * @param parameters parseParameters It contains the input files, output files and parameters */ public Algorithm(parseParameters parameters) { train = new myDataset(); val = new myDataset(); test = new myDataset(); try { System.out.println("\nReading the training set: " + parameters.getTrainingInputFile()); train.readClassificationSet(parameters.getTrainingInputFile(), true); System.out.println("\nReading the validation set: " + parameters.getValidationInputFile()); val.readClassificationSet(parameters.getValidationInputFile(), false); System.out.println("\nReading the test set: " + parameters.getTestInputFile()); test.readClassificationSet(parameters.getTestInputFile(), false); } catch (IOException e) { System.err.println( "There was a problem while reading the input data-sets: " + e); somethingWrong = true; } //We may check if there are some numerical attributes, because our algorithm may not handle them: somethingWrong = somethingWrong || train.hasNumericalAttributes(); somethingWrong = somethingWrong || train.hasMissingAttributes(); outputTr = parameters.getTrainingOutputFile(); outputTst = parameters.getTestOutputFile(); outputReglas = parameters.getReglasOutputFile(); //Now we parse the parameters, for example: BeamWidth = Integer.parseInt(parameters.getParameter(0)); minPos = Integer.parseInt(parameters.getParameter(1)); minNeg = Integer.parseInt(parameters.getParameter(2)); } /** * Decide cuando para el aprendizaje de reglas de una clase. * @param regla Regla regla con la que evaluamos las filas del dataset * @param intances Instances Objeto que contiene las filas del datase * @param clases int El numero dela clase que estamos evaluando * @return boolean Si se cumple la condicion o no */ private boolean Rule_Generation_Stopping_Criterion(Regla regla,Instances instances,int clases){ Attribute s[] = Attributes.getOutputAttributes(); Regla regla_vacia = new Regla(s[0].getNominalValue(clases),instances.getnInputs()); //si el valor de la regla, es menor que la regla sin condiciones, condicion verdadera if (regla.getScore(instances)>regla_vacia.getScore(instances)) return false; else return true; } /** * Elimina del objeto Instances las filas cubiertas por la regla. * Modifica, sin devolver nada, el objeto Intances * @param regla Regla regla con la que evaluamos las filas del dataset * @param intances Instances Objeto que contiene las filas del datase */ private void coveredPositives(Regla regla,Instances instances){ LinkedList<Double> fila; LinkedList<Integer> aux = new LinkedList <Integer> (); if (regla.getAntecedente().size()>0){//si es vacía, no cubre nada for(int i=0;i<instances.getnData();i++){ //Para cada fila fila = instances.getExample(i); //cogemos la fila String consecuente = instances.getOutputAsString(i); boolean filacubierta=true; //para cada antecedente de la regla se comprueba si es igual que //el de la fila del data set for(int j=0; j<regla.getSizeAntecedentes();j++){ Integer atributo = regla.getAV(j).getAtributo(); Double valor = regla.getAV(j).getValor(); if(!(valor.equals(fila.get(atributo)) )){ filacubierta=false; } } //si la variable permace a true, la fila es cubierta y se elimina if( filacubierta && (regla.getConsecuente().equals(consecuente))){ aux.add(i); } } instances.removeInstances(aux);//borra la lista de filas añadidas a aux } } /** * Cuenta el número de instancias positivas que hay en el dataset aun. * @param intances Instances Objeto que contiene las filas del datase * @param clases int El numero dela clase que estamos evaluando * @return int numero de instancias positvas en Instances */ private Integer positivesInstances(Instances instances,int clases){ Attribute s[] = Attributes.getOutputAttributes(); String clase = s[0].getNominalValue(clases); Integer instancias_pos=0; for(int i=0; i < instances.getnData(); i++){ if (instances.getOutputAsString(i).equals(clase)) instancias_pos++; } return instancias_pos; } /** * It launches the algorithm */ public void execute() { if (somethingWrong) { //We do not execute the program System.err.println("An error was found, either the data-set have numerical values or missing values."); System.err.println("Aborting the program"); //We should not use the statement: System.exit(-1); } else { LinkedList<Regla> RuleSet = new LinkedList <Regla> ();//conjunto de reglas //para cada valor que pueda tomar la clase objetivo for (int clases=0; clases< train.getnClasses(); clases++){ //crea una copia del data, en la clase Instance Instances instances = new Instances(train.getX(),train.getOutputAsString(), train.getnInputs(),train.getnClasses()); boolean exit = false; while (positivesInstances(instances,clases)!= 0 && !exit){ //se llama al procedimiento induce_one_rul, que devuelve una regla Regla regla = InduceOneRule.induce_One_Rule(instances, clases, BeamWidth, minPos, minNeg); //si es verdad lo que devuelve la siguiente llamada se sale del while if (Rule_Generation_Stopping_Criterion(regla,instances,clases)) exit = true; else { coveredPositives(regla,instances);//elimina las instancias cubiertas por la regla RuleSet.add(regla);//añade al data set } } } //eliminamos reglas repetidas del RuleSet LinkedList <Regla> reglas_aux = new LinkedList <Regla> (); boolean repetida = false; for(int tam=0; tam<RuleSet.size();tam++){ //si la regla es igual a otra regla contenida en el conjunto for(int i=0; i<reglas_aux.size();i++){ if(RuleSet.get(tam).equals(reglas_aux.get(i))) repetida = true;//encuentra una repetida } //si no se repite la almacena en la lista auxiliar if(!repetida) reglas_aux.add(RuleSet.get(tam)); repetida = false; //se reestrablece el valor de repetida } RuleSet = reglas_aux; //se copia el conjunto sin reglas repetidas BaseReglas conjunto_reglas = new BaseReglas(RuleSet); //muetra las reglas por pantalla conjunto_reglas.mostrarReglas(); //finalmente guardamos la base de reglas en fichero conjunto_reglas.ficheroReglas(outputReglas); //###################Comprobamos con el fochero de validacion############# LinkedList<String> resultado_val = conjunto_reglas.compruebaReglas(val); //###################Comprobamos con el fochero de test############# LinkedList<String> resultado_test = conjunto_reglas.compruebaReglas(test); //Finally we should fill the training and test output files doOutput(this.val, this.outputTr, resultado_val); doOutput(this.test, this.outputTst, resultado_test); System.out.println("Algorithm Finished"); } } /** * It generates the output file from a given dataset and stores it in a file * @param dataset myDataset input dataset * @param filename String the name of the file */ private void doOutput(myDataset dataset, String filename, LinkedList<String> resultado) { String output = new String(""); output = dataset.copyHeader(); //we insert the header in the output file Double noacertados=0.0; Double noclasificados=0.0; //We write the output for each example for (int i = 0; i < dataset.getnData(); i++) { //for classification: output += dataset.getOutputAsString(i) + " " + resultado.get(i) + "\n"; if (resultado.get(i).compareTo("No clasificado") == 0){ noclasificados++; }else if(dataset.getOutputAsString(i).compareTo(resultado.get(i)) != 0){ noacertados++; } } Fichero.escribeFichero(filename, output); } }