/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Neural_Networks.IRPropPlus_Clas;
import keel.Algorithms.Neural_Networks.NNEP_Common.initiators.RandomInitiator;
import keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.ILayer;
import keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.INeuron;
import keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.Link;
import keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedLayer;
import keel.Algorithms.Neural_Networks.NNEP_Common.neuralnet.LinkedNeuron;
/**
* <p>
* @author Written by Pedro Antonio Gutierrez Penia (University of Cordoba)(5/11/2007)
* @version 0.1
* @since JDK1.5
* </p>
*/
public class FullRandomInitiator extends RandomInitiator {
/**
* <p>
* Random initiator generating a Full model
* </p>
*/
/////////////////////////////////////////////////////////////////
// ------------------------------------------------- Constructors
/////////////////////////////////////////////////////////////////
/**
* <p>
* Empty constructor
* </p>
*/
public FullRandomInitiator() {
super();
}
/////////////////////////////////////////////////////////////////
// -------------------------- Overwriting RandomInitiator methods
/////////////////////////////////////////////////////////////////
/**
* <p>
* Create all the links of a neural net.
*
* @param linkedLayer Linked layer where create the links
* @param previousLayer LinkedLayer the neurons are going to be connected
* @param newNeuron New neuron to create its links *
* @return Random generator
* </p>
*/
@Override
public Link [] createLinks(LinkedLayer linkedLayer,
ILayer<? extends INeuron> previousLayer, LinkedNeuron newNeuron) {
//Array of links (Enough space for the maximum of neurons)
Link links[];
if(linkedLayer.isBiased()){
links = new Link[previousLayer.getMaxnofneurons()+1];
links[previousLayer.getMaxnofneurons()] = new Link();
links[previousLayer.getMaxnofneurons()].setBroken(false);
newNeuron.setBiased(true);
}
else
links = new Link[previousLayer.getMaxnofneurons()];
//For each effective link
for(int j=0; j<previousLayer.getMaxnofneurons(); j++){
links[j] = new Link();
links[j].setOrigin(previousLayer.getNeuron(j));
links[j].setTarget(newNeuron);
links[j].setBroken(false);
}
return links;
}
}