/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
/**
* <p>
* @author Written by Juli�n Luengo Mart�n 31/12/2005
* @version 0.3
* @since JDK 1.5
* </p>
*/
package keel.Algorithms.Preprocess.Missing_Values.ConceptAllPossibleValues;
import java.io.*;
import java.util.*;
import keel.Dataset.*;
import keel.Algorithms.Preprocess.Basic.*;
/**
* <p>
* This class computes all the possible values found in the data set for a given missing value and a determined class
* </p>
*/
public class ConceptAllPossibleValues {
double [] mean = null;
double [] std_dev = null;
double tempData = 0;
Vector[] X = null; //matrix of transformed data
FreqList[] timesSeen = null; //matrix with frequences of attribute values
String[] mostCommon;
int ndatos = 0;
int nentradas = 0;
int tipo = 0;
int direccion = 0;
int nvariables = 0;
int nsalidas = 0;
InstanceSet IS;
String input_train_name = new String();
String input_test_name = new String();
String output_train_name = new String();
String output_test_name = new String();
String temp = new String();
String data_out = new String("");
/**
* <p>
* Creates a new instance of ConceptAllPossibleValues
* </p>
* @param fileParam The path to the configuration file with all the parameters in KEEL format
*/
public ConceptAllPossibleValues(String fileParam) {
config_read(fileParam);
IS = new InstanceSet();
}
//Write data matrix X to disk, in KEEL format
private void write_results(){
//File OutputFile = new File(output_train_name.substring(1, output_train_name.length()-1));
try {
FileWriter file_write = new FileWriter(output_train_name);
file_write.write(IS.getHeader());
//now, print the normalized data
file_write.write("@data\n");
for(int i=0;i<ndatos;i++){
for(int inst=0;inst<X[i].size();inst++){
file_write.write(((String[])X[i].elementAt(inst))[0]);
for(int j=1;j<nvariables;j++){
file_write.write(","+((String[])X[i].elementAt(inst))[j]);
}
file_write.write("\n");
}
}
file_write.close();
} catch (IOException e) {
System.out.println("IO exception = " + e );
System.exit(-1);
}
}
//Read the patron file, and parse data into strings
private void config_read(String fileParam){
File inputFile = new File(fileParam);
if (inputFile == null || !inputFile.exists()) {
System.out.println("parameter "+fileParam+" file doesn't exists!");
System.exit(-1);
}
//begin the configuration read from file
try {
FileReader file_reader = new FileReader(inputFile);
BufferedReader buf_reader = new BufferedReader(file_reader);
//FileWriter file_write = new FileWriter(outputFile);
String line;
do{
line = buf_reader.readLine();
}while(line.length()==0); //avoid empty lines for processing -> produce exec failure
String out[]= line.split("algorithm = ");
//alg_name = new String(out[1]); //catch the algorithm name
//input & output filenames
do{
line = buf_reader.readLine();
}while(line.length()==0);
out= line.split("inputData = ");
out = out[1].split("\\s\"");
input_train_name = new String(out[0].substring(1, out[0].length()-1));
input_test_name = new String(out[1].substring(0, out[1].length()-1));
if(input_test_name.charAt(input_test_name.length()-1)=='"')
input_test_name = input_test_name.substring(0,input_test_name.length()-1);
do{
line = buf_reader.readLine();
}while(line.length()==0);
out = line.split("outputData = ");
out = out[1].split("\\s\"");
output_train_name = new String(out[0].substring(1, out[0].length()-1));
output_test_name = new String(out[1].substring(0, out[1].length()-1));
if(output_test_name.charAt(output_test_name.length()-1)=='"')
output_test_name = output_test_name.substring(0,output_test_name.length()-1);
file_reader.close();
} catch (IOException e) {
System.out.println("IO exception = " + e );
e.printStackTrace();
System.exit(-1);
}
}
/**
* <p>
* Process the training and test files provided in the parameters file to the constructor.
* </p>
*/
public void process(){
double []outputs;
double []outputs2;
try {
FileWriter file_write = new FileWriter(output_train_name);
try {
// Load in memory a dataset that contains a classification problem
IS.readSet(input_train_name,true);
int in = 0;
int out = 0;
int in2 = 0;
int out2 = 0;
int lastMissing = -1;
boolean fin = false;
boolean stepNext = false;
ndatos = IS.getNumInstances();
nvariables = Attributes.getNumAttributes();
nentradas = Attributes.getInputNumAttributes();
nsalidas = Attributes.getOutputNumAttributes();
String[] row = null;
X = new Vector[ndatos];//matrix with transformed data
for(int i=0;i<ndatos;i++)
X[i] = new Vector();
timesSeen = new FreqList[nvariables];
mostCommon = new String[nvariables];
file_write.write(IS.getHeader());
//now, print the normalized data
file_write.write("@data\n");
//now, search for missed data, and replace them with
//the most common value
for(int i = 0;i < ndatos;i++){
Instance inst = IS.getInstance(i);
in = 0;
out = 0;
row = new String[nvariables];
for(int j = 0; j < nvariables;j++){
Attribute a = Attributes.getAttribute(j);
direccion = a.getDirectionAttribute();
tipo = a.getType();
if(direccion == Attribute.INPUT){
if(tipo != Attribute.NOMINAL && !inst.existsAnyMissingValue()){
row[j] = new String(String.valueOf(inst.getInputRealValues(in)));
} else{
if(!inst.existsAnyMissingValue())
row[j] = inst.getInputNominalValues(in);
else{
//missing data
outputs = inst.getAllOutputValues();
in2 = 0;
out2 = 0;
for(int attr=0;attr<nvariables;attr++){
Attribute b = Attributes.getAttribute(attr);
direccion = b.getDirectionAttribute();
tipo = b.getType();
if(direccion == Attribute.INPUT){
if(tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in2)){
row[attr] = new String(String.valueOf(inst.getInputRealValues(in2)));
} else{
if(!inst.getInputMissingValues(in2))
row[attr] = inst.getInputNominalValues(in2);
}
in2++;
}else{
if(direccion == Attribute.OUTPUT){
if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out2)){
row[attr] = new String(String.valueOf(inst.getOutputRealValues(out2)));
} else{
if(!inst.getOutputMissingValues(out2))
row[attr] = inst.getOutputNominalValues(out2);
}
out2++;
}
}
}
//make frecuencies for each attribute
for(int attr=0;attr<nvariables;attr++){
Attribute b = Attributes.getAttribute(attr);
direccion = b.getDirectionAttribute();
tipo = b.getType();
if(direccion == Attribute.INPUT && inst.getInputMissingValues(attr)){
lastMissing = attr;
timesSeen[attr] = new FreqList();
for(int m = 0;m < ndatos;m++){
Instance inst2 = IS.getInstance(m);
outputs2 = inst2.getAllOutputValues();
boolean sameClass = true;
//are they same concept instances??
for(int k=0;k<nsalidas && sameClass;k++)
if(outputs[k]!=outputs2[k])
sameClass = false;
if(sameClass){
if(tipo != Attribute.NOMINAL && !inst2.getInputMissingValues(attr)){
timesSeen[attr].AddElement( new String(String.valueOf(inst2.getInputRealValues(attr))) );
} else{
if(!inst2.getInputMissingValues(attr)){
timesSeen[attr].AddElement( inst2.getInputNominalValues(attr));
}
}
}
}
}
}
for(int attr=0;attr<nvariables;attr++){
if(direccion == Attribute.INPUT && inst.getInputMissingValues(attr)){
timesSeen[attr].reset();
}
}
fin = false;
stepNext = false;
while(!fin){
in2 = 0;
for(int attr=0;attr<nvariables && !fin;attr++){
Attribute b = Attributes.getAttribute(attr);
direccion = b.getDirectionAttribute();
tipo = b.getType();
if(direccion == Attribute.INPUT && inst.getInputMissingValues(in2)){
if(stepNext){
timesSeen[attr].iterate();
stepNext = false;
}
if(timesSeen[attr].outOfBounds()){
stepNext = true;
if(attr == lastMissing)
fin = true;
timesSeen[attr].reset();
}
if(!fin)
row[attr] = ((ValueFreq)timesSeen[attr].getCurrent()).getValue(); //replace missing data
}
in2++;
}
if(!fin){
stepNext = true;
file_write.write(row[0]);
for(int y=1;y<nvariables;y++){
file_write.write(","+row[y]);
}
file_write.write("\n");
//X[i].addElement(row);
//row = (String[])row.clone();
}
}
}
}
in++;
} else{
if(direccion == Attribute.OUTPUT){
if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)){
row[j] = new String(String.valueOf(inst.getOutputRealValues(out)));
} else{
if(!inst.getOutputMissingValues(out))
row[j] = inst.getOutputNominalValues(out);
else
row[j] = new String("?");
}
out++;
}
}
}
if(!inst.existsAnyMissingValue()){
file_write.write(row[0]);
for(int y=1;y<nvariables;y++){
file_write.write(","+row[y]);
}
file_write.write("\n");
}
}
}catch (Exception e){
System.out.println("Dataset exception = " + e );
e.printStackTrace();
System.exit(-1);
}
file_write.close();
} catch (IOException e) {
System.out.println("IO exception = " + e );
e.printStackTrace();
System.exit(-1);
}
/***************************************************************************************/
//does a test file associated exist?
if(input_train_name.compareTo(input_test_name)!=0){
try {
FileWriter file_write = new FileWriter(output_test_name);
try {
// Load in memory a dataset that contains a classification problem
IS.readSet(input_test_name,false);
int in = 0;
int out = 0;
int in2 = 0;
int out2 = 0;
int lastMissing = -1;
boolean fin = false;
boolean stepNext = false;
ndatos = IS.getNumInstances();
nvariables = Attributes.getNumAttributes();
nentradas = Attributes.getInputNumAttributes();
nsalidas = Attributes.getOutputNumAttributes();
String[] row = null;
X = new Vector[ndatos];//matrix with transformed data
for(int i=0;i<ndatos;i++)
X[i] = new Vector();
timesSeen = new FreqList[nvariables];
mostCommon = new String[nvariables];
file_write.write(IS.getHeader());
//now, print the normalized data
file_write.write("@data\n");
//now, search for missed data, and replace them with
//the most common value
for(int i = 0;i < ndatos;i++){
Instance inst = IS.getInstance(i);
in = 0;
out = 0;
row = new String[nvariables];
for(int j = 0; j < nvariables;j++){
Attribute a = Attributes.getAttribute(j);
direccion = a.getDirectionAttribute();
tipo = a.getType();
if(direccion == Attribute.INPUT){
if(tipo != Attribute.NOMINAL && !inst.existsAnyMissingValue()){
row[j] = new String(String.valueOf(inst.getInputRealValues(in)));
} else{
if(!inst.existsAnyMissingValue())
row[j] = inst.getInputNominalValues(in);
else{
//missing data
outputs = inst.getAllOutputValues();
in2 = 0;
out2 = 0;
for(int attr=0;attr<nvariables;attr++){
Attribute b = Attributes.getAttribute(attr);
direccion = b.getDirectionAttribute();
tipo = b.getType();
if(direccion == Attribute.INPUT){
if(tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in2)){
row[attr] = new String(String.valueOf(inst.getInputRealValues(in2)));
} else{
if(!inst.getInputMissingValues(in2))
row[attr] = inst.getInputNominalValues(in2);
}
in2++;
}else{
if(direccion == Attribute.OUTPUT){
if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out2)){
row[attr] = new String(String.valueOf(inst.getOutputRealValues(out2)));
} else{
if(!inst.getOutputMissingValues(out2))
row[attr] = inst.getOutputNominalValues(out2);
}
out2++;
}
}
}
//make frecuencies for each attribute
for(int attr=0;attr<nvariables;attr++){
Attribute b = Attributes.getAttribute(attr);
direccion = b.getDirectionAttribute();
tipo = b.getType();
if(direccion == Attribute.INPUT && inst.getInputMissingValues(attr)){
lastMissing = attr;
timesSeen[attr] = new FreqList();
for(int m = 0;m < ndatos;m++){
Instance inst2 = IS.getInstance(m);
outputs2 = inst2.getAllOutputValues();
boolean sameClass = true;
//are they same concept instances??
for(int k=0;k<nsalidas && sameClass;k++)
if(outputs[k]!=outputs2[k])
sameClass = false;
if(sameClass){
if(tipo != Attribute.NOMINAL && !inst2.getInputMissingValues(attr)){
timesSeen[attr].AddElement( new String(String.valueOf(inst2.getInputRealValues(attr))) );
} else{
if(!inst2.getInputMissingValues(attr)){
timesSeen[attr].AddElement( inst2.getInputNominalValues(attr));
}
}
}
}
}
}
for(int attr=0;attr<nvariables;attr++){
if(direccion == Attribute.INPUT && inst.getInputMissingValues(attr)){
timesSeen[attr].reset();
}
}
fin = false;
stepNext = false;
while(!fin){
in2 = 0;
for(int attr=0;attr<nvariables && !fin;attr++){
Attribute b = Attributes.getAttribute(attr);
direccion = b.getDirectionAttribute();
tipo = b.getType();
if(direccion == Attribute.INPUT && inst.getInputMissingValues(in2)){
if(stepNext){
timesSeen[attr].iterate();
stepNext = false;
}
if(timesSeen[attr].outOfBounds()){
stepNext = true;
if(attr == lastMissing)
fin = true;
timesSeen[attr].reset();
}
if(!fin)
row[attr] = ((ValueFreq)timesSeen[attr].getCurrent()).getValue(); //replace missing data
}
in2++;
}
if(!fin){
stepNext = true;
file_write.write(row[0]);
for(int y=1;y<nvariables;y++){
file_write.write(","+row[y]);
}
file_write.write("\n");
//X[i].addElement(row);
//row = (String[])row.clone();
}
}
}
}
in++;
} else{
if(direccion == Attribute.OUTPUT){
if(tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)){
row[j] = new String(String.valueOf(inst.getOutputRealValues(out)));
} else{
if(!inst.getOutputMissingValues(out))
row[j] = inst.getOutputNominalValues(out);
else
row[j] = new String("?");
}
out++;
}
}
}
if(!inst.existsAnyMissingValue()){
file_write.write(row[0]);
for(int y=1;y<nvariables;y++){
file_write.write(","+row[y]);
}
file_write.write("\n");
}
}
}catch (Exception e){
System.out.println("Dataset exception = " + e );
e.printStackTrace();
System.exit(-1);
}
file_write.close();
} catch (IOException e) {
System.out.println("IO exception = " + e );
e.printStackTrace();
System.exit(-1);
}
}
}
}