/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.Neural_Networks.IRPropPlus_Clas;
/**
* <p>
* @author by Pedro Antonio Gutierrez Penia (University of Cordoba) 27/10/2007
* @version 0.1
* @since JDK1.5
* </p>
*/
public interface IOptimizableFunc
{
/**
* <p>
* Interface to specify a model or function from a set of coefficients
* and the gradient of an error function using this model
* </p>
*/
/**
* <p>
* Returns the initial value of a[], that is, the coefficients of
* the model
* @return double array of initial coefficients values
* </p>
*/
double[] getCoefficients();
/**
* <p>
* Establish the final value of a[], that is, the coefficients of
* model
* @param a double array of final coefficients values
* </p>
*/
void setCoefficients(double[] a);
/**
* <p>
* Returns the gradient vector of the derivative of an error function (E)
* with respect to each coefficient of the model, using an input observation
* matrix (x[]) and an expected output matrix (y[]). Also returns the
* error associated.
*
* @param x Array with all inputs of all observations
* @param y Array with all expected outputs of all observations
*
* @return double Resulting gradient vector of dE/da for all coefficients
* </p>
*/
public double[] gradient(double [][] x, double [][] y);
/**
* <p>
* Last error of the model
*
* @return double Error of the function of the model with respect to data y[]
* </p>
*/
public double getLastError();
}