/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * <p> * @author Written by Albert Orriols (La Salle, Ram�n Llull University - Barcelona) 28/03/2004 * @author Modified by Xavi Sol� (La Salle, Ram�n Llull University - Barcelona) 03/12/2008 * @version 1.1 * @since JDK1.2 * </p> */ package keel.Algorithms.Genetic_Rule_Learning.XCS; import keel.Algorithms.Genetic_Rule_Learning.XCS.KeelParser.Config; import java.lang.*; import java.io.*; import java.util.*; abstract class SSEnvironment implements Environment{ /** * <p> * This is the base class for all the single step problems environments * that can specify their behaviour by code (that don't need to read the * correct action for each condition from a file). * </p> */ /////////////////////////////////////// // attributes /** * <p> * Represents the number of actions that can take the condition. * </p> * */ private int numActions; /** * <p> * Represents the length of the condition. * </p> * */ private int condLength; /** * <p> * Indicates if the classification has been correct. * </p> * */ private boolean isCorrect; /** * <p> * Represents the maximum payoff that a classifier can get. * </p> * */ private double maxPayOff; /** * <p> * Represents the minimum payoff that a classifier can get. * </p> * */ private double minPayOff; /** * <p> * Represents the current state of the environment. * </p> * */ private double[] currentState; /** * <p> * It indicates if the classification has been performed. * */ private boolean classExecuted; /////////////////////////////////////// // operations /** * <p> * It's the constructor of the class. It initializes the environment. * </p> * <p> * * @param nActions is the number of possible actions in the current * environment. * </p> * <p> * @param cLength is the condition length of the classifier * </p> */ // public SSEnvironment(int nActions, int cLength) { // your code here // } // end SSEnvironment /** * <p> * Determines if the classification was good * </p> * <p> * * @return a boolean that indicates if the last classification was good. * </p> */ public boolean wasCorrect() { // your code here return false; } // end wasCorrect /** * <p> * This function returns the reward given when applying the action to the * environment. * </p> * <p> * * @return a double with the reward * </p> * <p> * @param action is the action chosen to do. * </p> */ public double makeAction(int action) { // your code here return 0.0; } // end makeAction /** * <p> * The function returns the current state. * </p> * <p> * * @return a double[] with the current state. * </p> */ public double[] getCurrentSate() { // your code here return null; } // end getCurrentSate /** * <p> * Creates a new state of the problem. XCS has to decide the * action to do. * </p> * <p> * * @return a double[] with the new state. * </p> */ public double[] newState() { // your code here return null; } // end newState /** * <p> * Returns the environment maximum payoff * </p> * <p> * @return a double with the environment maximum payoff. * </p> */ public double getMaxPayoff(){ return 0.; } /** * <p> * Returns the environment minimum payoff * </p> * <p> * @return a double with the environment minimum payoff. * </p> */ public double getMinPayoff(){ return 0.; } /** * <p> * Returns if the class has been performed. It is used * in the multiple step problems. * </p> * <p> * @return a boolean indicating if the problem has finished. * </p> */ public boolean isPerformed(){ return false; } /** * <p> * Returns the class of the environmental state. It's * used by UCS (supervised learning). * </p> * <p> * @return a int with the class associated to the current environmental * state. * </p> */ public int getEnvironmentClass(){ return 0; } //end getClass /** * <p> * It initializes the first example. It is used in the file * environment to get the examples sequentially. * </p> */ public void beginSequentialExamples(){} /** * <p> * It returns the new Example of a single step file environment. * </p> */ public double[] getSequentialState(){return null;} /** * <p> * It returns the number of examples of the database. It's only * used in the file environments. * </p> */ public int getNumberOfExamples(){return 0;} /** * <p> * It deletes the examples of the database that match with the * classifier passed. It's only used in the file enviornment. * </p> */ public void deleteMatchedExamples(Classifier cl){} } // end SSEnvironment