/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ package keel.Algorithms.Decision_Trees.C45_Binarization; import java.util.ArrayList; /** * <p>Title: Nesting</p> * <p>Description: This class implements the NESTING OVO scheme * <p>Company: KEEL </p> * @author Mikel Galar (University of Navarra) 21/10/2010 * @version 1.0 * @since JDK1.6 */ class Nesting { Multiclassifier classifier; // classifier from which the new OVO is nested int nClasses; OVO ovo; int empates; // number of ties int[] empate; // it contains wether the instance in the ith position obtained a tie when classifying or not ArrayList<Integer> ties; boolean creating; Multiclassifier method; // the nested OVO /** * The constructor of a nested OVO * @param classifier the root classifier * @param ovo the OVO instance of the root classifier */ public Nesting(Multiclassifier classifier, OVO ovo) { this.classifier = classifier; nClasses = classifier.nClasses; this.ovo = ovo; empates = 0; empate = new int[classifier.train.getnData()]; ties = new ArrayList<Integer>(); creating = true; } /** * It creates a new nested OVO */ public void newOvo() { // We have to create a new OVO classifier with the ties method = new Multiclassifier(true, classifier); method.execute_nesting(empate); creating = false; } }