/*********************************************************************** This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S�nchez (luciano@uniovi.es) J. Alcal�-Fdez (jalcala@decsai.ugr.es) S. Garc�a (sglopez@ujaen.es) A. Fern�ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ /** * * File: CNN.java * * The CNN Instance Selection algorithm. * * @author Written by Salvador Garc�a (University of Granada) 20/07/2004 * @version 0.1 * @since JDK1.5 * */ package keel.Algorithms.Instance_Selection.CNN; import keel.Algorithms.Preprocess.Basic.*; import org.core.*; import java.util.StringTokenizer; import java.util.Arrays; public class CNN extends Metodo { /*Own parameters of the algorithm*/ private long semilla; private int k; /** * Default builder. Construct the algoritm by using the superclass builder. * */ public CNN (String ficheroScript) { super (ficheroScript); }//end-method /** * Executes the algorithm */ public void ejecutar () { double conjS[][]; double conjR[][]; int conjN[][]; boolean conjM[][]; int clasesS[]; int S[]; int i, j, l; int nClases; int pos; int baraje[]; int tmp; int tamS; int claseObt; int cont; int busq; boolean continuar; long tiempo = System.currentTimeMillis(); /*Inicialization of the candidates set*/ S = new int[datosTrain.length]; for (i=0; i<S.length; i++) S[i] = Integer.MAX_VALUE; /*Getting the number of different classes*/ nClases = 0; for (i=0; i<clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; tamS = 0; if (nClases < 2) { System.err.println("Input dataset is empty"); nClases = 0; } /*Inserting an element of each class*/ Randomize.setSeed (semilla); for (i=0; i<nClases; i++) { pos = Randomize.Randint (0, clasesTrain.length-1); cont = 0; while (clasesTrain[pos] != i && cont < clasesTrain.length) { pos = (pos + 1) % clasesTrain.length; cont++; } if (cont < clasesTrain.length) { S[tamS] = pos; tamS++; } } /*Algorithm body. We resort randomly the instances of T and compare with the rest of S. If an instance doesn�t classified correctly, it is inserted in S*/ do { continuar = false; baraje = new int[datosTrain.length]; for (i=0; i<datosTrain.length; i++) baraje[i] = i; for (i=0; i<datosTrain.length; i++) { pos = Randomize.Randint (i, clasesTrain.length-1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } for (i=0; i<datosTrain.length; i++) { /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosTrain[0].length]; conjR = new double[tamS][datosTrain[0].length]; conjN = new int[tamS][datosTrain[0].length]; conjM = new boolean[tamS][datosTrain[0].length]; clasesS = new int[tamS]; for (j = 0; j < tamS; j++) { for (l = 0; l < datosTrain[0].length; l++) { conjS[j][l] = datosTrain[S[j]][l]; conjR[j][l] = realTrain[S[j]][l]; conjN[j][l] = nominalTrain[S[j]][l]; conjM[j][l] = nulosTrain[S[j]][l]; } clasesS[j] = clasesTrain[S[j]]; } Arrays.sort(S); busq = Arrays.binarySearch(S, baraje[i]); if (busq < 0) { /*Do KNN to the instance*/ claseObt = KNN.evaluacionKNN(k, conjS, conjR, conjN, conjM, clasesS, datosTrain[baraje[i]], realTrain[baraje[i]], nominalTrain[baraje[i]], nulosTrain[baraje[i]], nClases, distanceEu); if (claseObt != clasesTrain[baraje[i]]) { //fail in the class, it is included in S continuar = true; S[tamS] = baraje[i]; tamS++; } } } } while (continuar == true); /*Construction of the S set from the previous vector S*/ conjS = new double[tamS][datosTrain[0].length]; conjR = new double[tamS][datosTrain[0].length]; conjN = new int[tamS][datosTrain[0].length]; conjM = new boolean[tamS][datosTrain[0].length]; clasesS = new int[tamS]; for (j=0; j<tamS; j++) { for (l=0; l<datosTrain[0].length; l++) { conjS[j][l] = datosTrain[S[j]][l]; conjR[j][l] = realTrain[S[j]][l]; conjN[j][l] = nominalTrain[S[j]][l]; conjM[j][l] = nulosTrain[S[j]][l]; } clasesS[j] = clasesTrain[S[j]]; } System.out.println("CNN "+ relation + " " + (double)(System.currentTimeMillis()-tiempo)/1000.0 + "s"); // COn conjS me vale. int trainRealClass[][]; int trainPrediction[][]; trainRealClass = new int[datosTrain.length][1]; trainPrediction = new int[datosTrain.length][1]; //Working on training for ( i=0; i<datosTrain.length; i++) { trainRealClass[i][0] = clasesTrain[i]; trainPrediction[i][0] = KNN.evaluate(datosTrain[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[0], trainRealClass, trainPrediction, entradas, salida, relation); //Working on test int realClass[][] = new int[datosTest.length][1]; int prediction[][] = new int[datosTest.length][1]; //Check time for (i=0; i<realClass.length; i++) { realClass[i][0] = clasesTest[i]; prediction[i][0]= KNN.evaluate(datosTest[i],conjS, nClases, clasesS, this.k); } KNN.writeOutput(ficheroSalida[1], realClass, prediction, entradas, salida, relation); }//end-method /** * Reads configuration script, and extracts its contents. * * @param ficheroScript Name of the configuration script * */ public void leerConfiguracion (String ficheroScript) { String fichero, linea, token; StringTokenizer lineasFichero, tokens; byte line[]; int i, j; ficheroSalida = new String[2]; fichero = Fichero.leeFichero (ficheroScript); lineasFichero = new StringTokenizer (fichero,"\n\r"); lineasFichero.nextToken(); linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of the training and test files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTraining = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroValidation = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroTest = new String (line,i,j-i); /*Getting the path and base name of the results files*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); token = tokens.nextToken(); /*Getting the names of output files*/ line = token.getBytes(); for (i=0; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[0] = new String (line,i,j-i); for (i=j+1; line[i]!='\"'; i++); i++; for (j=i; line[j]!='\"'; j++); ficheroSalida[1] = new String (line,i,j-i); /*Getting the seed*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); semilla = Long.parseLong(tokens.nextToken().substring(1)); /*Getting the number of neighbors*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); k = Integer.parseInt(tokens.nextToken().substring(1)); /*Getting the type of distance function*/ linea = lineasFichero.nextToken(); tokens = new StringTokenizer (linea, "="); tokens.nextToken(); distanceEu = tokens.nextToken().substring(1).equalsIgnoreCase("Euclidean")?true:false; }//end-method }//end-class