/***********************************************************************
This file is part of KEEL-software, the Data Mining tool for regression,
classification, clustering, pattern mining and so on.
Copyright (C) 2004-2010
F. Herrera (herrera@decsai.ugr.es)
L. S�nchez (luciano@uniovi.es)
J. Alcal�-Fdez (jalcala@decsai.ugr.es)
S. Garc�a (sglopez@ujaen.es)
A. Fern�ndez (alberto.fernandez@ujaen.es)
J. Luengo (julianlm@decsai.ugr.es)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/
**********************************************************************/
package keel.Algorithms.MIL.APR.IteratedDiscrimination;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;
import java.util.StringTokenizer;
public class Main {
public static void main(String args[]) {
Properties props = new Properties();
try {
InputStream paramsFile = new FileInputStream(args[0]);
props.load(paramsFile);
paramsFile.close();
}
catch (IOException ioe) {
ioe.printStackTrace();
System.exit(0);
}
// Files training and test
String trainFile;
String testFile;
StringTokenizer tokenizer = new StringTokenizer(props.getProperty("inputData"));
tokenizer.nextToken();
trainFile = tokenizer.nextToken();
trainFile = trainFile.substring(1, trainFile.length()-1);
testFile = tokenizer.nextToken();
testFile = testFile.substring(1, testFile.length()-1);
tokenizer = new StringTokenizer(props.getProperty("outputData"));
String reportTrainFile = tokenizer.nextToken();
reportTrainFile = reportTrainFile.substring(1, reportTrainFile.length()-1);
String reportTestFile = tokenizer.nextToken();
reportTestFile = reportTestFile.substring(1, reportTestFile.length()-1);
try {
IteratedDiscrimination algorithm = new IteratedDiscrimination();
algorithm.setAlpha(Double.parseDouble(props.getProperty("alpha")));
algorithm.setEpsilon(Double.parseDouble(props.getProperty("epsilon")));
algorithm.setTau(Double.parseDouble(props.getProperty("tau")));
algorithm.setTrainReportFileName(reportTrainFile);
algorithm.setTestReportFileName(reportTestFile);
algorithm.setDatasetSettings(trainFile,testFile);
algorithm.execute();
} catch (Exception e) {
e.printStackTrace();
}
}
}